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ABSTRACT

ABSTRACT

Quantum topology is considered to be initiated by the discovery of the Jones poly-
nomial in 1984, followed with observations of numerous links to physics. In the late *80s,
Atiyah, Segal, and Witten established an intrinsic definition of the Jones polynomial using
SU(2) Chern-Simons theory, revealing the rich connections of the Jones polynomial with
the physical world. Successive findings around the Jones polynomial emerged, includ-
ing one famous conjecture that is the main topic of this thesis, the Quantum Modularity
Conjecture.

In 1995, R. Kashaev introduced a knot invariant using the quantum dilogarithm func-
tion, which for a hyperbolic knot K is conjectured to have an exponential growth rate, a
conjecture known as the Volume Conjecture. In 2001, H. Murakami and J. Murakami
discovered that Kashaev’s invariant is equal to the value of the N-colored Jones polyno-
mial at N-th roots of the unity. With this, D. Zagier observed a modular relation between
the values of the N-colored Jones polynomial at different roots of the unity and extended
the statement of Volume Conjecture to a modular relation of the functions. The extended
statement is known as the Quantum Modularity Conjecture (QMC).

More recently, J. E. Andersen and R. Kashaev introduced the Teichmiiller TQFT
based on Chern-Simons theory with infinite dimensional gauge groups, promoting the
quantum Teichmiiller theory to a TQFT of categroids. On further investigation into values
of the Teichmiiller TQFT on knot complements of the 4; knot and the 5, knot, S. Garo-
ufalidis and D. Zagier discovered phenomena suggesting deep relationships between the
state integral from the Teichmiiller TQFT and QMC. Furthermore, their observation also
suggested rich connections with several other topics, such as the Dimofte—Gaiotto—Gukov
index and the quantum spin network.

This thesis will mainly focus on introducing the construction of the Teichmiiller
TQFT and the contents of QMC, and demonstrate their connections by listing the observa-
tions made by S. Garoufalidis and D. Zagier and more recent results along with elementary

proofs for some of them from joint work of the author, N. An and S. Garoufalidis.

Keywords: knots; topological quantum field theory; Teichmiiller TQFT; holomorphic

quantum modular forms; Quantum Modularity Conjecture
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CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION

Quantum topology is considered to be initiated by the discovery of the Jones polyno-
mial in 1984, followed with observations of numerous links to physics. In the late *80s, in
attempt of establishing an intrinsic and unified definition for the Jones polynomial instead
of depending on the knot projections, Atiyah, Segal, and Witten discovered the rich con-
nections of the Jones polynomial with the physical world. In particular, they found that
the Jones polynomial could be realized as an invariant computed from the SU(2) Chern-
Simons theory.l'! Successive findings around the Jones polynomial emerged, including
one famous conjecture that is the main topic of this thesis, the Quantum Modularity Con-
jecture.

In 1995, R. Kashaev introduced a knot invariant using the quantum dilogarithm func-
tion. For each knot K and integer N € N, Kashaev’s knot invariant assigns a complex
number (K) 5. For a hyperbolic knot K, its Kashaev’s invariant (K) ; is conjectured to
have an exponential growth rate of the hyperbolic volume of the knot complement .53 \ K
as N tends to the infinity, hence the hyperbolic volume of the knot complement can be
recovered from the Kashaev’s invariant. This is known as the Volume Conjecture.?! In
2001, H. Murakami and J. Murakami discovered that (K) 5 is equal to J ]I§ (€2™VN) the
value of the N-colored Jones polynomial at N-th roots of the unity.[*} With this, D. Za-
gier observed a modular relation between the values of the N-colored Jones polynomial
at different roots of the unity and extended the statement of Volume Conjecture to a mod-
ular relation of the function on Q/Z defined by JX(-a/N) = J ]Ié (e*™9N) where a and
N are two coprime integers. The modular relation states that JX(y - x)/J¥ (x) admits an
exponential growth rate again related to the hyperbolic volume of $> \ K as x — oo in
Q, where y = (;‘ 3 ) €SL,(Z)andy - x = %.[4] This extended statement is known as
the Quantum Modularity Conjecture (QMC).

More recently, J. E. Andersen and R. Kashaev introduced the Teichmiiller topologi-
cal quantum field theory (TQFT) based on Chern-Simons theory with infinite dimensional
gauge groups, promoting the quantum Teichmiiller theory to a TQFT of categroids. The
Teichmiiller TQFT assigns to each shaped pseudo 3-manifold, in particular knot comple-
ments with certain triangulations, a tempered distribution, which can be represented by

a holomorphic function on the cut plane C' = C \ (—o0, 0], given by an integral called

1



CHAPTER 1 INTRODUCTION

the state integral. Using the method of residues, the state integral can be factorized into a
sum of quadratic products of a g-series and a g-series; On the other hand, the asymptotic
expansion of state integral as the variable tends to zero along rays gives an asymptotic
series — the state integral serves as a bridge connecting these two very different objects.
On further investigation into state integrals of the 4, knot and the 5, knot, S. Garoufalidis
and D. Zagier discovered phenomena suggesting deep relationships between the state in-
tegral from the Teichmiiller TQFT and QMC. For instance, the asymptotic expansions
of state integrals behave similarly to those of J K(x); in fact, the g-series from state inte-
grals are asymptotically related to the asymptotic expansion of J¥(x), see observations 1
and 2. Furthermore, their observation also suggested rich connections of state integral
with several other topics, such as the Dimofte—Gaiotto—Gukov index and the quantum
spin network.

This thesis will mainly focus on the Teichmiiller TQFT and the QMC. A primary
introduction to the construction of the Teichmiiller TQFT and the state integral will be
given in chapter 2, outlining the basic components for computation and listing in sec-
tion 2.4 the specific state integrals in concern of this thesis, namely those of the 4, knot,
the 5, knot and the (-2, 3, 7) pretzel knot. Chapter 3 briefly introduces basic notions of
modular forms in section 3.1 and explicitly describes the content of QMC in section 3.2.
A summary of the recent results mainly on state integrals of the 4 knot and the 5, knot ob-
served by S. Garoufalidis and D. Zagier will be presented in chapter 4, followed by results
on the (-2, 3, 7) pretzel knot from the joint work of the author, N. An and S. Garoufalidis

in section 4.4, along with elementary proofs for some of them.



CHAPTER 2 THE TEICHMULLER TQFT

CHAPTER 2 THE TEICHMULLER TQFT

This chapter briefly reviews the Teichmiiller TQFT constructed by Andersen and
Kashaevl®! explaining the source of the state integral which will be our main concern in
chapter 4.

Recall that a Topological Quantum Field Theory (TQFT) in dimension n, as axiom-
atized by Atiyah!%l is a functor from a category of n-dimensional cobordisms to a cate-
gory of finite-dimensional vector spaces subject to a sequence of conditions. Instead of a
functor between categories, the Teichmiiller TQFT is a functor from a sub-categroid of a
category of 3-dimensional cobordisms to the categroid of spaces of (complex) tempered
distributions, where the definition of categroids is given below.

Definition 2.1 (Categroid): A categroid C consists of a family of objects Obj(C) and
for any pair of objects A, B in Obj(C) a family of morphisms Mor.(A, B) such that
» for any three objects A, B,C there is a family of composable morphisms

Fc(A, B,C) C Mor.(A, B) X Mor.(B, C) and a composition map
o Fc(A,B,C) — Morq(A,C),

such that the composition of composable morphisms is associative;
+ for any object A we have an identity morphism 1, € Mor,(A, A) which is compos-

able with any morphism f € Mor.(A, B) or g € Mor-(B, A) and we have
lyef=7f, goly=g¢
Roughly speaking, a categroid is a category where, instead of all, only some of cat-
egorically composable morphisms are composable. Functors between categroids are de-
fined similarly as functors between categories.
Therefore, to define the Teichmiiller TQFT, we need to define three things: the do-

main categroid of 3-dimensional cobordisms, the target categroid of tempered distribu-

tions, and the TQFT functor. We will define them respectively in sections 2.1 to 2.3.

2.1 The Domain Categroid

To define the domain categroid, let us firstly consider the so called (#riangulated)

pseudo 3-manifolds. The morphisms of our desired categroid of cobordisms will be cer-

3



CHAPTER 2 THE TEICHMULLER TQFT

tain equivalence classes of (triangulated) pseudo 3-manifolds with a series of additional

structures.

2.1.1 From pseudo 3-manifolds to gauge equivalence

In this subsection we give a crash course on pseudo 3-manifolds, shape structures
and gauge equivalence relations.
Definition 2.2 (Pseudo 3-manifolds): A (triangulated) pseudo 3-manifold is a A-
complex obtained by gluing finitely many standard 3-simplicies in R> (i.e. tetrahedra)
with totally ordered vertices along codimension-1 faces with respect to vertex-order-
preserving and orientation-reversing simplicial maps such that
* every codimension-1 face belongs to exactly one or two 3-simpilicies;

« for every pair of 3-simplicies 7" and T, there is a sequence of 3-simplicies
T = TO’Tl’ Tk == T,,

such that the intersection T; N T, ; is a codimension-1 face foralli =0, ---,k — 1.

Note that the second condition guarantees that pseudo 3-manifolds are connected in a
relatively strong sense, which allows us to define the TQFT functor in a relatively simple
way, as we will see in section 2.3.

Let X be a pseudo 3-manifold. For an integer i, we will denote by A,;(X) the set of

i-dimensional cells in X. For any i > j, we also denote tautologically
A(X) = {(a,b) | a € A(X), b € Aj(a)),

where the cell a, when considered as an A-complex and taken the set A (@), is thought
to be its original standard form without any identification on its boundary (with itself)

induced by gluings. We have natural projection maps
Vi ij o AJ
¢ MO = M), ¢ ALX) — Ay(X).

Note that two different edges on (and paired with) one tetrahedron might be mapped to
the same edge by ¢>! if they are glued together in X.
Definition 2.3 (Shape structure): A shape structure on a pseudo 3-manifold X is a

map ay : Aé(X) — Ry such that
ax(T,e))+ay(T,e))+ay(T,e3)=m, (2-1)

for any T € A;(X) and edges e, e;,e3 € A;(T) such that e; N ey N ey is a vertex of T'.

The values of @y on edges of tetrahedra are called dihedral angles. An oriented pseudo
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3-manifold with a shape structure is called a shaped pseudo 3-manifold. We denote the

set of all shape structures on X by S(X).

Figure 2-1 A tetrahedron with ordered vertices and dihedral angles. ©*!

It is straightforward to see that the dihedral angles at opposite edges of any tetrahe-
dron are the same, see fig. 2-1. The condition in eq. (2-1) allows us to associate to each
tetrahedron T the geometric structure of an ideal hyperbolic tetrahedron by entering the
complex shape variables at edges e; € A[(T),

sinay (T, e,) siax(Teey)
sinay (T, e3) ’
into Thurston’s hyperbolicity equations 3% where e, and e are edges such that e;Ne,Ne;
is a vertex of T and ey, e,, e5 corresponds to the counter-clockwise cyclic order of edges
around the vertex e; N e, N e3 as seen from the outside of 7.
Definition 2.4 (Weight function): For a shaped pseudo 3-manifold X, we associate

a weight function
which associates to each edge e € A{(X) the sum of dihedral angles around it
wy(e) = Z ay(T,e").
(T.e"e(d>hH~1(e)
Definition 2.5 (Level): A leveled shaped pseudo 3-manifold is a pair (X, £ y) consist-
ing of a shaped pseudo 3-manifold X and a real number £y € R called the level. We
denote by LS(X) the set of all leveled shaped structures on X.

The choice of the level £y is arbitrary, independent of any other structure on X. The
level is introduced as a parameter to participate in the construction of the gauge equiva-
lence relation and the TQFT functor so that the TQFT will be well-defined.

Given an oriented tetrahedron 7" and a vertex on the tetrahedron, the orientation in-
duces a cyclic order on the three edges meeting at the vertex. To be explicit, embedding

T into R? in an orientation-preserving manner, the cyclic order of the edges is counter-

5



CHAPTER 2 THE TEICHMULLER TQFT

clockwise as seen from the outside of 7. Moreover, this cyclic order is compatible with
the pairing of opposite edges, hence the orientation of T' determines a cyclic order on the
set of pairs of opposite edges of T. Given any two edges e, e’ of T, we define a skew-

symmetric symbol
Eoel S {O,il}, Eool = TEpl o

suchthate, ,» = Oif e and e’ belong to the same pair of opposite edges of T and €, ,» = +1
if the pair of opposite edges associated with e is the cyclical preceding of that of e’.

Definition 2.6 (Gauge equivalent): Two leveled shaped pseudo 3-manifolds
(X,?y) and (Y, ¢y) are gauge equivalent if there exist an isomorphism 2: X — Y of

the underlying cellular structures of X and Y and a function
g:A(X)—R
such that

A, 0X) c g1 0),

ay(h(T). h(e)) = ay(T.e)+ 7 Y &,.8(p(e)). V(T.e) € AYX),
e’eA(T)

where the orientation of T is the one inherited from X and iy is the canonical map that

maps T into X, and

Cy =Cx + 2 g(e) Z <%_a(7;;el)>

e€A(X) (T e"e@>H1e)

It is easy to see that the weights on the edges are gauge invariant in the sense that

Q)X:wy°h.

Definition 2.7 (Based gauge equivalent): Two leveled shape structures (ay,?y)
and (a),7’) on an oriented pseudo 3-manifold X are based gauge equivalent if
(X,ay,?y) and (X, ag(, f;() are gauge equivalent in the sense of definition 2.6, where
the isomorphism 4 : X — X in the equivalence is the identity map.

In fact, since X and Y become topologically indistinguishable after fixing a cellular
isomorphism A: X — Y, the only nontrivial part of gauge equivalence is about the
leveled shape structures, and it is easy to see that the (based) gauge equivalence is well-
defined as an equivalence relation. By forgetting the level we define similarly (based)

gauge equivalence relation for shaped pseudo 3-manifolds.

6



CHAPTER 2 THE TEICHMULLER TQFT

2.1.2 The 3 -2 Pachner moves, admissibility, and the categroid 5,

To define our desired categroid we need a more refined version of gauge equivalence
relations called admissible equivalence relations, which rely on the 3 — 2 Pachner moves.
Before introducing the 3 — 2 Pachner moves, we need the following notion.

Definition 2.8 (Balanced): An edge e € A;(X) of a shaped pseudo 3-manifold X is
balanced if it is internal and w y(e) = 2z. An edge is unbalanced if it is not balanced. A
shaped pseudo 3-manifold X is fully balanced if all edges of X are balanced.

By definition, a shaped pseudo 3-manifold can be fully balanced only if its boundary is
empty.

Let X be a shaped pseudo 3-manifold and e € A;(X) be a balanced edge of X shared
by exactly three distinct tetrahedra 77,7, and T;. The tetrahedra T, T,,T; compose a
shaped pseudo 3-submanifold S of X with the only internal and balanced edge e. The
3 — 2 Pachner move is to replace the triangulation of the topological space underlying .S
with another triangulation S, consisting of only two tetrahedra T, and T such that the
induced triangulation of 0.5 stays the same. The triangulation .S, is constructed as shown

in fig. 2-2, where the left side stands for .S, and the right side stands for .S.

b1

(&3] (oD

B2\| 2

Figure 2-2 The 3 — 2 Pachner movel™

We have A;(S,) = A{(S) \ {e}. Using the labels of the dihedral angles in fig. 2-2,

the shape structure on S, is given by

a=ph+r as=p+r
Pa=P+rs Ps=F+r (2-2)

va=p+r vs=h+7s
The condition that e is balanced, i.e. @; + @, + a3 = 2z, guarantees that the above
equations give a well-defined shape structure on .S,. Conversely, given shaped T, and T,

if we have (positive) solutions for the dihedral angles of any of T}, T, or T3, the rest dihe-
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dral angles of T}, T, and T; follow immediately via eq. (2-2) and automatically satisfy the
balanced condition. Furthermore, for any shaped T, and T, the corresponding solutions
of the shape structures of T, T, and T; are all gauge equivalent.
Definition 2.9 (Shaped 3 — 2 Pachner move): Given two shaped pseudo 3-
manifolds X and Y. We say that Y is obtained from X by a shaped 3 — 2 Pachner move
along e € A(X) if Y is obtained from X by replacing .S by .S, as constructed above.
The shaped pseudo 3-manifold obtained from X by a shaped 3 — 2 Pachner move along
e will be denoted as X,.
Definition 2.10 (Leveled shaped 3 — 2 Pachner move): Given two leveled
shaped pseudo 3-manifolds (X, Zy) and (Y, Zy). We say that (Y,/y) is obtained from
(X,?x) by a leveled shaped 3 — 2 Pachner move along e € A{(X) if Y = X, and

Cy =Cx + ﬁ Z Z Ee,e,0x (T €2).

(T.ee(@>)~1(e) e2€A(T)

Definition 2.11 (Pachner refinement): Let X and Y be two (leveled) shaped pseudo
3-manifolds. X is a Pachner refinement of Y if there exists a finite sequence of (leveled)

shaped pseudo 3-manifolds
X = Xo,Xz, oo ’X}’l = Y,

such that for any i € {0, ---,n—1}, X, is obtained from X; by a (leveled) shaped 3 —2
Pachner move.

Therefore X is a Pachner refinement of Y means that Y is obtained from X by a
finite sequence of 3 — 2 Pachner moves. Note that the word “refinement” is in the sense
that the triangulation of X contains more edges and tetrahedra than that of Y.

Definition 2.12 (Admissible): An oriented pseudo 3-manifold X is admissible if
Hy(X — Ay(X), Z) = 0.

Note that since Pachner refinements preserve the set of vertices and the topological
structures of original spaces, Pachner refinements of admissible pseudo 3-manifolds are
still admissible.

Definition 2.13 (Admissibly equivalent): Two admissible (leveled) shaped pseudo
3-manifolds X and Y are admissibly equivalent if there exists Pachner refinements X’
and Y’ of X and Y respectively such that X’ and Y’ are gauge equivalent.

We can now define our desired categroid. For this, we need to introduce a canonical

way to perceive oriented pseudo 3-manifolds as cobordisms.
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Let X be an oriented pseudo 3-manifold, the orientation of X induces an orientation
on each tetrahedron T € A3(X), according to which we give an orientation-preserving
embedding of T into R?. Recall that we required the vertices of T to be totally ordered,
say T = [vg, Uy, U5, 13], the relative position of the ordered vertices of T embedded in R?

gives a sign for T', defined by
sign(T) = sign (det(v; — vy, vy — vy, U3 — UO)) .
With this sign of T', we define the signs of the faces of T by
sign(9,T) = (-1)' sign(T), i € {0, ---,3},
where 0, is the canonical boundary map
9; ([vgs -+ Uj]) = [Vo, s Vs Voo 0], 0 <P <

See fig. 2-3 for a graphical demonstration.

Figure 2-3 The signs of faces of tetrahedral®)

Since the boundary of X consists of a subset of faces of tetrahedra in A;(X), the
restriction of the sign function signy : A,(X) — {*1} to A,(dX) divides 0X into two

parts, namely

0X =0,XU0_X, 0.X= U A.

Aesigny ! (£D)NoX

In this way, a leveled shaped pseudo 3-manifold X becomes a morphism by
X € Homg(d_X,0,.X),

in the cobordism category /3 whose objects are pseudo 2-manifolds (defined similarly as
in definition 2.2) and composition is gluing with respect to vertex-order-preserving and

orientation-reversing simplicial maps with addition of levels and the obvious composi-

9



CHAPTER 2 THE TEICHMULLER TQFT

tion of dihedral angles. Take the sub-categroid of admissible leveled shaped pseudo 3-
manifolds and quotient the admissible equivalence relation, we obtain our desired domain
categroid B,.

Definition 2.14 (The domain categroid /3,): The domain categroid /3, consists of
as objects simplicial isomorphism classes of pseudo 2-manifolds and as morphisms ad-
missible equivalence classes of admissible leveled shaped pseudo 3-manifolds, with the

composition described above.

2.2 The Target Categroid

The morphisms in the target categroid will be (complex) tempered distributions,
which are continuous linear functionals on (complex) Schwartz spaces.
Definition 2.15 (Schwartz space): For n € N, the (complex) Schwartz space S(R")
is the topological vector space whose

* underlying (complex) vector space is

S(R") = {f e C*(R",C)

sup [|x“0yf (0|l < o0, Va,p € N”} ;
R

x€R"
* topology is that induced by semi-norms p,, 4(f) := Sup,egn ||x“(3ﬂf(x)|| foralla, p €

N".

The Schwartz space S(R") is a dense subspace of L*(R") (over C) with the usual
inner product

L*R") X LA(R") — C
(f,8) = (f18) = [ f(X)g(x)dx
Definition 2.16 (Tempered distribution): For n € N, the space of (complex) tem-
pered distribution S’ (R") is the space of continuous linear functionals on the (complex)
Schwartz space S(R").

Since S(R") is dense in L*(R"), the restriction of continuous functionals on L?(R")
to S(R") gives an injection (LZ(R”)), — S’(R"). The Riesz representation theorem
for Hilbert spaces gives a natural isomorphism between L?(R") and its dual vector space
(Lz([R”))’ of continuous linear functionals, L>(R") (Lz(IR"))/ . f e {(f|-). There-
fore L2(R"™) can be seen as a subspace of S’(R") via the following map

L*R") — S'(R")
f = (g [ra f(x)g(x) dx)

which also restricts to a natural inclusion S(R") & S’(R"). Furthermore, this inspires us

10



CHAPTER 2 THE TEICHMULLER TQFT

to adopt the following notation for an element ¢ in S’'(R"), that for any f € S(R"),

o(f) = / P £ () dx, (2-3)

hence blurring the difference between functions and distributions. An advantage of this
notation is that the formal integration on the right hand side gives us a way to define
change of coordinates for elements in S’ (R").
Definition 2.17 (The target categroid D): The target categroid D consists of as ob-
jects finite sets and as morphisms from a finite set n to m tempered distributions in
S’(R"™mM),

Using the notation introduced in eq. (2-3), the composition in D can be described as
the following,

Homgp(n, m) X Homp(m, k) — Homyp(n, k)

(0, v) = (7 frum @& VW, 2) £ (x,2) (X, y, 7))
where x, y and z denote the standard coordinates of R”, R™ and R¥, respectively. Note that
the above map is not well-defined for all pairs of (¢, y), hence D is a categroid instead of a
category. An explicit description for the subset Fp,(n, m, k) of Homp(n, m) x Homp(m, k)
where the above map is well-defined can be found in Andersen and Kashaev’s paper[>$3.

8]Theorem V.12

The nuclear theorem! provides us with an isomorphism (of vector

spaces)
L(S(R"),S"(R™) =~ S'(R™)
g
o fr 1 > 7
o(f ®8)
where

(f ® g)(xl’ oo ,Xn+m) = f(xl’ o 7xn)g(xn+l7 ot ’xn+m)'

Elements in £(S(R"), S'(R™)) admit a natural definition of adjoint. For any ¢ €
L(S(R™), S'(R™)), its adjoint ™ € L(S(R™), S’'(R")) is uniquely defined by

@*(Q)(f) = @(f)(&).

Definition 2.18 (Adjoint of tempered distributions): The adjoint of a tempered
distribution ¢ € S’(R") is the element ¢* € S’ (R") defined by

0" (f) = (/).

11



CHAPTER 2 THE TEICHMULLER TQFT

2.3 The TQFT Functor

The final missing piece for our TQFT functor is Faddeev’s quantum dilogarithm.
The following subsection briefly summarizes the definition and some basic properties of

Faddeev’s quantum dilogarithm.

2.3.1 Faddeev’s quantum dilogarithm

Definition 2.19 (Faddeev’s quantum dilogarithm): Faddeev’s quantum diloga-
rithm is a function of two complex arguments z and b for | Imz| < %lb + b7!| by the

formula

@, (z) = ex / e2izw dw
pl2) = 5P ¢ 4 sinh(wb) sinh(w/b)w |’

where the contour C runs along the real axis, deviating into the upper half plane in the

vicinity of the origin and extended by the functional equation
@,z — ib%1/2) = (1 + ¥ 5Dy (z + ib*'12)

to a meromorphic function in z € C.

It is clear by definition that
q)b(Z) = q)_b(Z) = q)l/b(z)’

We may define equivalently that
(62”(Z+Cb)b; ) -

(e2n(z—cb)b—1 . q~) -

and then extend by the above symmetric properties, where

D,\(2) = , Reb>0,Imb>0, VzeC, (2-4)

g=eim Gi=e AT = i(b+ b2, (2-5)

and (x; q),, 1s the Pochhammer symbol

m—1
@ =[] - g%, meNU{w},
i=0

provided that |g| < 1 when m = co. Note that when b is in the first quadrant, we do have
lql, 14| < 1 where g and g are defined as in eq. (2-5).
Using eq. (2-4), it is not hard to see that when b is in the first quadrant, ®,(z) has

poles and zeros (in z) as below:
poles: ¢, +iNb +iNb~!,  zeros: —c, —iNb —iNp~". (2-6)
The following identities will be useful in the process of expanding the state integral

12



CHAPTER 2 THE TEICHMULLER TQFT

using the method of residues later in chapter 4.
Proposition 2.1: Faddeev’s quantum dilogarithm satisfies the following identities:

* (inversion relation) for any b,z € C
1

.0 ) ) q 24
D, (2)Py(—2) =™ ©y(0)", Dy(0)" = 7 . (2-7)
« (pseudo-periodicity [*1-mma 2.1y for p in the first quadrant and any n, m € N,
1 1 1 (qe”™; )

@, (x + ¢y +imb +inb™!) = .
1 — e27b7'x (qe27bx; q),, (G- 1e27b7'x; G1), (e b™'*; §),

« (expansion near poles[?1emma 2.1, Proposition 2.2y £ py i the first quadrant and any
n,m € N,

@ o P (- I 2 @b ) exp (I, 2 @b )

®,(x + ¢, +imb+inb™") =

>

(@ Do (@ D@5 G"), (1 —e'x)
where
-1 _s(m+1)
m, . _ N5 4

AOEDY T

s=1
—n+ Eﬁ”)(q) =1 (2-8)
E"@={E"@ €N +1

2E(@) - E"(@) | € 2N*
2.3.2 Construction of the TQFT functor

Let us now define our TQFT functor. Given b € C \ iR, we define a functor
F, . B, — D such that
* (on objects) for a pseudo 2-manifold £ € Obj(3,),

Fy(E) = Ay(Z) € Obj(D).
* (on morphisms) for a representative (X, ay, ¢ y) of a morphism in 3,
Fy(X,ay,ly) = e”ifTX(“b'])Zzb(X, ay) € S (RA2000)
where Z,(X, ay) is independent of the level £ .
The value of Z, on a single tetrahedron 7' with sign(T) = 1 is an element

Zy(T, a7) € S(R2D) ¢ ' (R*2TD)) given by

27zi(x3—x2)<x0+”;—?(b+b—‘ ))+zri"ﬁTT(b+b—1 )2

Zb(T’ aT)(X(), X115 X9, X3) = 5(.7(,'0 — X4 + Xz)

@, <x3 —xy+ S8+ b—l))

13



CHAPTER 2 THE TEICHMULLER TQFT

where ¢ is Dirac’s delta-function supported at 0 € R,

ay—az  20b+bH?2+1
1 3 3 — ( + 6) + s ai = laT(aOalT)’ l (S {1,253}a
T

and x; corresponds to the indeterminant

$r=oja3 +

x;: 0(T) — R.
For oppositely oriented tetrahedron T (i.e. sign(T™) = —1), we define
Zb(T) = Zb(T)*,

where T is the positively oriented tetrahedron corresponding to 7 (with the same shape
structure) and Z,(T)* is the adjoint of Z,(T) as defined in definition 2.18.

The value of Z, on an arbitrary admissible leveled shaped pseudo 3-manifold
(X, ay) 1s obtained by composing the values of Z, on each tetrahedron in A,(X) ac-
cordingly in D. The strong connectedness condition in definition 2.2 guarantees that such
composition always exists for us to obtain a morphism from d_X to d, X.

The above procedure gives a unique well-defined functor F, : B, — D. Moreover,
5]Theorem 4

it is a s-functor in the following sense.|

Definition 2.20: A functor F : B, — D is a %-functor if
F(X™) = F(X)",

where X ™ is X with opposite orientation, and F(X)* is the adjoint of F(X) in the sense
of definition 2.18.

In the papers of Andersen and Kashaev, they gave a series of detailed examples of
calculation of the precise values of Z,, on spaces of knots complement using the graphical

11]p.12 [5]§11

presentation of pseudo 3-manifolds! , which we do not duplicate here.

2.4 The State Integral

The state integral Zy of a knot K C 3 will be the holomorphic function (in the

variable b) on the cut plane C’ := C \ (—o0, 0] given by, up to some prefactors, the value
of Z, in the TQFT functor on a one-vertex H -triangulation of (.S 3K ).
Definition 2.21 (One-vertex H-triangulation): Let(M, K)be a pair ofa closed ori-
ented 3-manifold M and a knot K C M. A one-vertex H-triangulation of (M, K) is a
A-triangulation of M with only one vertex and a distinguished edge representing the knot
K.

14
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A detailed description of how to construct a one-vertex H-triangulation (S, K) for
a knot K is given in the paper of Kashaev, Luo and Vartanov![!218%1
The following lists the state integrals of knots that will appear later in chapter 4,

51811

computed by Andersen and Kashaev! . We will adopt the notation 7 := b* and take

the limit ¢ — 0% without writing out the limit repeatedly.
* (The 4, knot)

Z, (v) = / @ \/;(x)ze_”ixz dx, (reC’)
R+ie
* (The 5, knot)
.2
Zs (1) = / O ~(x)’e dx. (reC)
%2 R+ie \/_
« (The (=2, 3,7) pretzel knot)H31ed- 58)

Zp37(1) = / . CD\/;(X)ZCD\/;(Zx — cb)e_”i(z"_%)2 dx. (reC))
R+i2 +ie

15
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CHAPTER 3 MODULAR FORMS AND QUANTUM
MODULAR FORMS

3.1 Basics about Modular Forms

In this section, we briefly review the basic definitions and terminologies of modular
forms and introduce a family of examples called the Eisenstein series.

Let = {x+iy | x,y € R,y > 0} be the upper half plane in C. We define the group

a b
SLZ(R)={< d>ad—bc=1},
c

on $ by, foranyy = (95) € SL,(R)and z € §,

action of

_az+b
Ccz4d
It is straightforward to see that this action is well-defined. Indeed, we have
Im(z)
Im(y - z) = ————,
A TE

and the associativity follows from direct computation.

In the following we will mainly focus on the subgroup I} := SL,(Z) of SL,(R).
Definition 3.1 (Modular forms): A modular form of weight k on I} is a holomorphic
function f : $ — C such that

(@ = ez +d*f (E22) = fea), G-1)

foranyz € Handy = (2}) eT.

Most of the time the weight k will be considered to be an integer, but the definition still
makes sense even if we allow k to be rational numbers. The identity in eq. (3-1) is usually
referred to as the modularity transformation property.

Since ( 5 ! ) € I}, modular forms are 1-periodic, hence we may adopt the 1-invariant

notation ¢ := "% and expand a modular form f as a g-series,
o
f2) =Y a,q".
n=0

The coefficients a,,’s are called Fourier coefficients.

Let M, (I7) be the set of modular forms of weight k on I'}, then it is a vector space

16
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over C. Since the multiplication of a modular form of weight k and a modular form of
weight / 1s a modular form of weight k& + [, the direct sum M (I7) := @1?:0 M, (I7)
admits a structure of graded C-algebra. Since (7 %) € I, we see from eq. (3-1) that
M, (I7) = 0 when k is odd. It is easily seen that M,(I}) = C. Note also that an estimation
of order of growth along with the fact that modular forms are holomorphic would imply
that M ([}) = 0 for k < 0.[141811

One of the most famous families of examples of modular forms is the Eisenstein
series. There are several different approaches to their definition, here we only introduce
one of them. 14132

Let k be a positive even integer and consider the stabilizer of the infinity, the sub-
group I, of I, which is explicitly {+ (% )[n € N}. Let I} act (by right) on the set of
holomorphic functions on $ via f — f|,r, we see that I’ preserves constant functions,
in particular the constant 1. Hence the summation

2 Uy
Iorel N\
over (right) cosets I\l of I’ in I is invariant under I}, provided the absolute conver-
gence. Since left multiplication by ((1) i ) preserves the bottom row of matrices and acts
transitively on any set of matrices in I} with the same bottom rows, I\l is bijectively
represented by coprime pairs of integers (¢, d) up to signs. Therefore
1 1

2 Ly = ) 2 m

yELL\ cdeZ
(c,d)=1

I,

(5

For k > 2 the absolute convergence of the right-hand side is easily seen.
Definition 3.2 (Eisenstein series): For any even integer k > 2, the Eisenstein series

of weight k is the modular form &, (z) defined by

1 1

E(z) == — 3-2

K2 =5 c,dzelz (cz+d)k (3-2)
(c,d)=1

The Fourier expansion of the Eisenstein series for even k with k > 2 is

N 1 Qri)*
¢(k) (k= 1)!

2 ak_l(n)q", (3-3)

n=1

where ¢(k) = ). o1 1/r* is the value at k of the Riemann zeta function and 0y_1(n) for

17
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n € N denotes the sum of the (k — 1)-th powers of the positive divisors of n, namely

Zak_](n)qn — Z Z k—1 mr (3_4)
n=1

m=1 r=

For k = 2, the right-hand side of eq. (3-2) is not absolutely convergent, but we may

define it using eq. (3-3) which is absolutely convergent, hence
E(2)=1-24 oy(m)q".
n=1

This corresponds to a certain order of summation on the right-hand side of eq. (3-2).
However, since the summation is not interchangeable for £ = 2, & (z) is no longer a
modular form. Nonetheless, it still satisfies a quasi-modularity condition; [!#IProposition 6

Proposition 3.1: Forz € Hand (¢5) €I, we have
E(2) = (cz+ d)*&(2) + %c(cz +d).

Using eq. (3-4), one sees easily that

Ez)=1-24 2 (3-5)

1 (- q")2
We will see that Eisenstein series of weight 2 of the form in eq. (3-5) will appear

repeatedly in chapter 4, along with the following similar series

q}’l

Ez)=1-4) 1 (3-6)
n=1

which we call the Eisenstein series of weight 1.

3.2 Quantum Modular Forms and the Quantum Modularity Con-
jecture

Generally speaking, quantum modular forms are objects occurring in perturbative
quantum field theory that have properties similar to the modularity transformation prop-
erty. Due to the variety of these objects, it is hard to give a definition that applies to all
of them. However, we can give “definitions” that demonstrate what kind of objects they
are, attempting to cover as large range of objects as possible.

Let us keep the notations $ and I} in the previous section. A quantum modular form,
instead of a holomorphic function on $), is an assignment on the orbit of the cusp oo; cusps
are points to be added in the compactification. Noticing that an element ( a 3 ) € I sends

oo to %, the orbit of o is exactly Q U { oo}, which we may naturally denote as P!(Q) and

18
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equip it with the discrete topology.

Definition 3.3 (Weak quantum modular form): A weak quantum modular form is
a function f: P1(Q) \ § — C for some finite subset .S of P'(Q) such that for each
element y € I, the function A, : PY(Q)\ (S U y‘l(S)) — C defined by

h,(x) = f(x) = (f 1)) (3-7)

extends to a function on a co-finite subspace of P!(R) with properties of continuity or
(real) analyticity.

For any two elements y;,y, € I}, we have

hy \kr2 = Flera = flenra

hence

hy, = —Flinrn=U =l + Ul = flirnirn) = by, + by iy

Therefore to check that f is a quantum modular form it suffices to check it for a set of
generators of I.

Definition 3.4 (Strong quantum modular form): A strong quantum modular form
is a power-series-valued function f : P1(Q)\ S — C[e]: x — f(x +ie) for some finite
subset .S of P!(Q) such that for each y € I there exists a real-analytic function A, on
a neighborhood of a co-finite subspace of IPl(IR) in PI(C) whose expansions at rational

points agree with the modular equation of £, i.e. for any x € Q in the domain of 4,,,

hy(z) = f(2) - (f|k}’> (z), z— x.

In many examples a strong quantum modular form f admits an extension (C \ R) U
Q — C which is analytic on C \ R and has vertical asymptotic expansions approaching
rational points coinciding the power series given by values of f.

More generally speaking, a common property shared and should be concerned with
of quantum modular forms is extendibility via certain “modular relations”, relations con-
sidering the action of I} on §. In chapter 4, we will see examples of g-series defined on
C \ R that are extendible to the cut plane C' = C \ (—o0, 0]. Those objects are known as
holomorphic quantum modular forms.

The main topic that we are about to delve into, the Quantum Modularity Conjecture,
however, involves neither a weak quantum modular form nor a strong quantum modular
form in the strict sense of our definitions above. Still, we will be able to see their similarity

and modular properties.
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In 1995, using the quantum dilogarithm function

@ = [JA - xg", (gl < 1)
n=0

R. Kashaev introduced a knot invariant related to a positive integer N, which is denoted
as (K)y for a knot K21, For any knot K and positive integer N, the invariant (K)
is a complex number such that (K)y € Z [e N ]. Kashaev conjectured that, if K is hy-
perbolic, which means that the complement S° \ K can be given a hyperbolic structure,
then the absolute value of (K') 5y grows exponentially as N increases. More precisely, the

following full asymptotic expansion was conjectured

V(K)

(K)y ~ Nig o Nqb”“(%), N = oo, (3-8)

where V (K) is the hyperbolic volume of $° \ K and ®®)(#) is a divergent power series
in #[!13]. This conjectural expansion is known as the Volume Conjecture.!'®!

In 2001, H. Murakami and J. Murakami discovered that Kashaev’s invariant (K)
is equal to the evaluation of the colored Jones polynomial J ﬁ(q) at ¢ = ny, where npy :=

27i
e .13 For the 4, knot, the colored Jones polynomial is given by

T (g) = Zq m"H(l— )1 - ¢"™).

j=1
Note that when m > n, the product HT: ((1=¢"7)(1 = ¢"*) vanishes. When g is an N-th

root of unity, we have

(0]

IN@=Y (1= =g (1-gM)° Z(q 93

m=0
The absolute value of J;t,' (q) is a Q N R-valued function, where Q is the algebraic closure
of Q, and its first few values are as follows:
¢ |1 -1 g s el

‘J (q)‘ ‘ 1 13 27 46425 46-2v/5 89
Table 3-1 First few values of |th (9)| at roots of the unity!“!

As eq. (3-8) suggests, we have asymptotic expansion

‘J ( %n>‘ Lyt (W x 697 & 724351 @
36y/3N  TTT6N2  4199040+/3 N°

(3-9)
as N — oo, where the coefficients are all algebraic numbers. Since we are now deal-

20



CHAPTER 3 MODULAR FORMS AND QUANTUM MODULAR FORMS

ing with colored Jones polynomials (instead of the Kashaev’s invariant), we can further
27i

expand it at roots of the unity other than e ¥ . For instance,

4 21 314 Vép N 41 r 12625 72
Jl<_N>‘_ N N¥2e2m 7 (14 z 4. ), (3-10
‘N © K(N) - g N7Te 36\/§N 7776 N2 (3-10)

where

27 N =1mod?2,
k(N)=<1 N =2mod4,
5 N=0mod4
Comparing with table 3-1, we see that

oy = ot (50|

In fact for rational values of N, eq. (3-10) still holds after replacing x(N) with

by |J ir ( ”IN)‘ More generally, for any knot K, if we define
JX: Q7 - Qn R, JK(—p/q) — |JqK (ezmp/q>| ’

where p and g are coprime, this observation then extends to the following conjectural

expansion that

o-x 3 Véf)<X ) (K) 2ri
TR exTare Pae \cex +a

), X —-o00inQ, (3-11)

for any y = (‘Lf 3) € I} with ¢ > 0, where <I) (h) is a power series with algebraic

coefficients depending on a € Q/Z. Therefore eq. (3-11) states a (conjectural) modular
property, which is known as the Quantum Modularity Conjecture Note that the case
where (25) = (9')and X = N of eq. (3-11) implies eq. (3-8)1*!
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CHAPTER 4 THE QUANTUM MODULARITY
CONJECTURE AND STATE INTEGRALS

Over the past years the Quantum Modularity Conjecture (QMC), as introduced in
section 3.2, has become one of the most outstanding problems in quantum topology,
and during the research into it multiple phenomena and consequences have been re-

17-191 " The phenomena, mostly observed by S. Garoufalidis, R. Kashaev and D.

vealed!
Zagier in their research of the 4 knot, the 5, knot and the (-2, 3, 7) pretzel knot, indicate
a close relationship of the conjecture with the Dimofte—Gaiotto—Gukov index[?°! and the
Andersen—Kashaev state integral which we have introduced in chapter 2, two knot invari-

318211 " The invariants also turned out to be related to

ants that were introduced in 2011[
the quantum spin network. Most of these relations are given in terms of the corresponding
g-series rising from the conjecture, invariants and spin network 3]

A family of evidence for the QMC has been presented by Garoufalidis and Za-

18:22] Although a proof for the 4, knot is easy, currently for very few knots a rigorous

gier.!
proof of the Quantum Modularity Conjecture has been given.

In this chapter, we will mainly focus on introducing the remarkable phenomena ob-
served in Andersen—Kashaev state integrals for the 4, knot, the 5, knot and the (-2, 3,7)
pretzel knot. A reason for the existence of relations between the state integrals and the
QMC is that they both come from Chern—Simons theory, of infinite dimensional (the Te-
ichmiiller TQFT) and finite dimensional (SL,(C) Chern—Simons theory) respectively. We
will focus more on the (-2, 3, 7) pretzel knot in section 4.4 while giving brief summaries
of the discoveries for the 4; knot and the 5, knot in sections 4.1 to 4.3, as there are newly
obtained results for the (-2, 3, 7) pretzel knot by the author, N. An and S. Garoufalidis.

This chapter will be more likely a list of observations and results, with proofs for
some of them in section 4.4 and a minimum amount of comments. For the affluent sto-
ries and reasons behind these results, the reader is kindly referred to their original pa-
pers. [13:18.23]

Throughout this chapter, the following notations will be used consistently:

te€C' =C\ (~,0],

b=1/r, h=2xir,
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: -1
2rit ~ —2xir~! l(b +b )
= s =e s Cp = — .
q q b >

41 The 4, Knot

Recall from section 2.4 that the state integral of the 4, knot is a holomorphic function
on C’ := C \ (—o0,0], defined by

s 2
Z, (1) = / O ~(x)’e™ dx, (r€C)
H R+ie \/_

where @, (x) is Faddeev’s quantum dilogarithm as we have discussed in section 2.3.1.
When Im 7 > 0 (so that |g| < 1 in the following), the state integral can be expanded

into a combination of g-series G (¢) and G(q),
1

AR 1 . _L .
2i <5> 24, (1) = 12G1(9)Go(q) — 7 2Gp(9)G1(9), (4-1)
where g = e**17, G = e 2mit Explicitly, the g-series are given by
0 ant1) S % a(n+1)
g 2 qs(n+l) q 2
Go(q) = 2 (~1'"—=. Gi@ =Y | 1+2n-4Y —— | (-1)'—,
n=0 (45 @ n=0 =14 (4: @)

recalling that (x; g),, 1s the Pochhammer symbol

n—1
(x:9), = [J( - xd). neNU{w}.
i=0

The computation using the method of residues, along with that of the 5, knot and 1-

dimensional state integrals in general, has been given in detail by Garoufalidis and

9,13

Kashaev!>!3! . The symmetry ®@;(x) = D1 (x) implies that Z, () = Z41(T_1) whenever

7 € C\ R, hence we can extend G(¢q) and G(q) to |q| > 1 by

Go@) =Goq™"), Gi(@=-Gi(g"), (@eC, |gl#1)

so that the factorization eq. (4-1) holds for all z € C \ RI8I
In Garoufalidis and Zagier’s recent paper!'®], the following observations were made:
Let ®, (h) be defined by

~ V@)
by () =c 7 OU(h),

where ®“4(n) is given by eq. (3-8) for K = 4., then

Observation 1: When 7 tends to 0 along any ray in the interior of the upper half-plane,

Gy(e2"7) ~ \/T (641 Qnir) - i&>41(—2nir)>
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to all orders in .

Observation 2: When 7 tends to 0 in a cone in the interior of the upper half-plane
G, (&%) ~ (&)41(2m) + 1641(—2m))
T
to all orders in 7.

Observation 3: For |g| < 1, we have

) n(3n+1) 1 ) (n+m)(n+m+1)
q 2 +m q
Go(@) = (0: 9 ) (=1 = (="
0 ,,Z() (¢:9)7 @Dy n,mzzo (4 Dn(q; Din
and
oo nGr1)
Gi(q) = Y (1 +6m(=1y L2
1 - - .
= (¢; Dn

n(3n+1)

The series Y - ,(—=1)" q(q-;)3 occurred in Garoufalidis’ work on the stability of the

coefficients of the evaluation of the regular quantum spin network >4

Let Ind4l (g) denote the Dimofte-Gaiotto-Gukov index of the 4; knot, which is also
a g-series, then

Observation 4:

Indy (¢9) = Go(9)G,(9).

4.2 The 5, Knot
Recall that the state integral of the 5, knot is
)
Zs (1) = / O ~(x)’e™ dx. (reC)
% R+ie \/_

Using the method of residues and extending by symmetry, it factorizes into the following

form!18!]

3iz

7\ 8
2+ <g> Zs,(t) = thy(D)ho(x™") + 20y (D) (1) + %ho(f)hz(r_l),
for r € C \ R, where
hj(7) = (1Y H (e**77),  for +Im(z) >0,

with g-series Hji(q) given by

m@=§mmm»Hthmm#m<FQM)

m=0
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where

(m+1) m , m(m+1)/2

q" (-D"q

(@) = —= T,(@) = 3
(@ Dim (@ Dim

and

1 +3€& 2+
1(4)+Z q

3450@) ~w 3¢
(2) _ M, 2 2
7 P (@) = P (@) - +

© ()
m = 17 m = : . ’
P (@) P (@) =g 7 a0

j=1

E5@-3 <« 3¢
, PP =PV @ - 2+ :
o @ (@) ot T

j=1 j=1

j=1

PP =1, P(g) =

3@-1  ~1+2¢
— Z i
Here &,(q) and &,(q) are the weight 1 and weight 2 Eisenstein series as introduced in
section 3.1.

Parallel to the 4, knot, the following observations were made!'®!:

Let C/I\)S2 be the following vector of series

(/13(52,61)
&\)52 = | §G2:03) ,
PG2:02)

where ®2¢1) is the series for the 5, knot in eq. (3-8), D622 and 5293 are two other se-
ries indexed by o; € Ps, where Ps, coincides with the set of boundary parabolic SL,(C)-
representations of z;(S> \ 5,). A definition of ®K%) for a knot K was given by T.

= lh
Dimofte and Garoufalidis[>>-?6!. Let h = < hy ’ >, then

Thz
Observation 5:

N,®(Q2zir) when arg(r) € (0,0.19)

h@~y o x
N_®Q2zir) when arg(r) € (—5,0>
where
172 12 1 12 =12 12
N,.=| O 12 12|, N_=]| 3/4 —-1/4 —1/4].
—1/12 5/12 =-2/3 —13/12 -1/12 1/12

For the index, there is

Observation 6:

Inds (q) = 2H (@) H[ (9).

Furthermore, the following quadratic relation for the g-series H;—”s was also ob-

served
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Observation 7:
H{ (q)H; (q) —2H [ (9)H[ (9) + H} (9)H (9) = 0.
For the 4, knot, this could not be seen since it is trivially

Go(9G(9) — G(9)Gy(q) =0,

as a consequence of that the 4, knot is amphichiral.

4.3 The Descendant State Integral

12_ =112

. 2 . .
By adding a factor e ﬂ< i >x to the integrand we obtain the descendant state

integral 'l For example, the descendant state integral of the 4, knot is

(A1) 2
Z (r) = / D ~(x)e
4 R+ie \/;

By the method of residues and the symmetry, it factorizes as the following,

—7rix2+27r(/111/2—/41'_1/2 >

Ydx. (Lu €2

A, P B O Uy T (A 1 (A
ZyM (@) = (1 22 g 24<\/?Gé’”<q>G§ )<q>—\—EG§”)(q>Gé @ ).

(4-2)
where G(()k) and Gik) are defined by

n(n+1) n(n+1)
@ i qT+kn @ i qs(n+1) i qT+k"
G, (q) = -)'———, G (@=|1+2k+2n-4 (-1 s
‘ = (@ Dn : Sl-¢ )& (@

for |g| < 1 and extended to |g| > 1 by G;k)(q_l) = (—1)jG§.k)(q). The matrix of these

series,

P P )
w@={ 2 ! , (gl # 1)
k ( G(()k+1) (@) G(1k+1) (@)

satisfies the following linear g-difference equation!?71:

Theorem 4.1: The matrix w,(q) is a fundamental solution of the linear g-difference

equation

Vier1@ = 2= 9@ + v (@ =0 (k € 2). (4-3)
It has constant determinant

det(w(q)) = 2, (4-4)
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and satisfies the symmetry and orthogonality properties

wi(g™h = w_,(9) bo

1\q = Ww_i\q 0 —1 5
1 0 1 g [0 1
Ewk(q)<1 0>wk(q ) —<_1 0)’

for all integers k and for |g| # 1.
The factorization eq. (4-2), along with the orthogonal relation above, implies, since the

left-hand-side is a holomorphic function on = € C’, that the matrix-valued function
(U O N
W, () = W, @)™ ( . 1) w (@, (q =7, =" ) (4-5)

which is originally defined only for ¢ € C \ R, extends holomorphically to = € C’
for all integers A and p. We remark here that this example along with theorem 4.5 for
the (=2, 3,7) pretzel knot demonstrates a remarkable phenomenon that the descendant
state integrals naturally give valuable examples of matrix-valued holomorphic quantum
modular forms.

A similar story of descendants for the 5, knot can be found in Garoufalidis and Za-
gier’s recent paper!!815¢¢- 43
In the study of the refined quantum modularity conjecture for the 4; knot, the fol-

lowing 2-by-2 matrix of asymptotic series was found by Garoufalidis and Zagier**!

By (1) = <‘<1141(h> ¥, (0 )
i®, (h) —iP, (h)

A~ iV
where ‘1’41 (h) = eTl lP(41)(h) and $“ (h) is a power series in /2 with similar properties

as CI)(41)(h). Let O(7) be the following matrix of linear combinations of G;k)’s,

0(t) = wy(q)" <1 —%) eq. (4-3) G(()O)(q) % (Gél)(q) - G(()_l)(q))
= w, e (43). ] |
01 V(g %(Gﬁl)(q) -G 1)(q))

t hen
Observation 8: As 7 — 0 in the upper half-plane, we have:

1/ 0 1 -1\ 4
( (\)/; \/;>Q(T)~<1 1>(I)41(27rir).

As a consequence, by eq. (4-4) that det (Q(z)) = 2 for all 7, it follows that

det(®, (1) = 1,
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and!18!]
(I)41(—h)(I>4l(h) = L

4.4 The (-2,3,7) Pretzel Knot

For the (-2, 3, 7) pretzel knot, the factorization of the state integral involves 6 pairs of

g-series, and some of them are power series in integer powers of ¢'/?

, which is different
from the case of the 4, knot and the 5, knot. This new phenomenon is formulated by
Garoufalidis and Zagier as the level of knots, and (-2, 3,7) is said to have level N = 2.
Writing the 6 pairs of g-series as Hj.i(q) for j =0,1, .-, 5, Garoufalidis and Zagier found
the following!'®):

Observation 9: The relation with the index is given by

Ind_,37(q) = H (9)H[ (9),

and the following quadratic relation holds:

%HO*(q)H;(q) —-H (9)H[ () + %HJ(Q)HO‘(CI)—H3+(q)H3‘(q)+H4+(q)H;(q) —H{(9)H;(¢q) = 0.

Since the (-2, 3, 7) pretzel knot has 6 boundary parabolic SL,(C) representations, there
are 6 series {C/I\)g,ai)(h)}?zl. Similar to the case of the 4, knot and the 5, knot, consider
the vector of asymptotic series corresponding to the (—2,3,7) pretzel knot &D(x(h) =
((/I\)Efi)(h)>6'—l and the vector of holomorphic functions A(z) := (h j(r))f.’zl with weight
(1,0, 1,—11_,—1,—1), where h(z) = (£1)% Hy (€**"") for £Im(z) > 0 respectively
with 6 = (0,1,2,0,0,0), then

Observation 10: Forany y = (95) € SL,(Z), as X € C\ R in a sector near the

positive real axis and X — oo, we have:

I -1 0 -1 =172
1 1 0 0 0
2/3 =213 0

hl,(X) ~ p(y)

4/3  1/6 & < 2ri )
11 0 1 -12| “*\ex+4d

0 0O -12 -1 O
2 0 0O -12 -1 O

o O o o O

to all orders in 1/X, where p is a complex representation of SL,(Z).
Note that since some of Hji(q) are power series in ql/z, here h j(7) are 2-periodic,

instead of 1-periodic as in the case of the 4, knot and the 5, knot.
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The following two subsections present the newly obtained results on the descendant
state integral of the (-2, 3, 7) pretzel knot, with an emphasis on the algebraic nature of
these objects, involving the following aspects:

(a) parallel to eq. (4-2), the factorization of the descendant state integral defines a 6 X 6
matrix of (deformed) g-hypergeometric series; see theorem 4.2.
(b) parallel to theorem 4.1, the matrix is a fundamental solution of a self-dual linear
g-difference equation; see theorems 4.3 and 4.4.
(c) parallel to eq. (4-5), the corresponding cocycle is a holomorphic function that ex-
tends from 7 € C \ R the cut-plane C' = C \ (—o0, 0]; see theorem 4.5.
(d) parallel to observation 8, the stationary phase of the descendant state integral deter-
mines a 6 X 6 matrix of asymptotic series, which is related to the g-series given by
the factorization; see theorem 4.5 and eq. (4-60).
Moreover, we will present elementary proofs for theorems 4.3 and 4.4 and outline the
computation for the stationary phase in section 4.4.2. These are joint work of the author
with N. An and S. Garoufalidis.

4.41 Factorization of the descendant state integral

The descendant state integral of (-2, 3,7) pretzel knot is

/ . —
Z((f’2/13)7)(’l') — / (I)\/;(x)ch\/;(zx _ cb)e—ﬂl(Zx—cb)2+27r(/lb—,1’b l)x dx, (4_6)

” R+i%”+is
where 4,4 € Z, 7 = b*, \/t =band ¢, = i(b+ b~ 1)2.
Theorem 4.2: We have:

i i\ ] ’

2e7 (qEqT) Z<(f’2/T3?7)(T)
=— Zl—Tho(/l, T)hz(ﬂ’, T_l) + h (4, T)hl(/l’, T_l) - %hz(ﬁ, T)ho(/l’, 1_1)
—i (%h3(/17 7)hy (A, - %h4(/l, 7)hy(A, T+ hs(A, ©)hs(u, T_l)) .

In the above theorem

. H (q) if |g] < 1
hy(2)=H, (&%), H, (@) =4 (4-7)

(=D%HZ, (47" iflql > 1
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where H; ;(q) are g-series defined as the following: Recall that £,(g) and &,(q) denote

the Eisenstein series of weights 1 and 2

(o) qn (o) qn
E(@=1-4 : E(=1-24y —— (4-8)
: ; (1—qm 2 Z{ (1 - g2
and
X -1 _s(m+1)
s g

s=1

are some series that appear in the factorization of one-dimensional state integrals(®! .

HF @) = D' Y 60@piym@,  Hy (@ = (D" Y Ty Py u(0), (4-10)
m=0

n=0
with
qm(2m+1)+,1m qn(n+1)+,1’n
taim@ = ———— Ty, = ———, (4-11)
(@ Dm(q; Do (@ Dn(q; 9y,
and
=1 —dm+ A+ 1-2E™(q) - 2E®™
p/l,O,m(Q) =1 p/l,l,m(q) =4am+ A+ 1 (Q) 1 (CI),
2 1
Pi2n@ = i@ = 2Ey"(@) ~ 4E5 ™ (@) = 2650,
(4-12)
2
Puon @ =1, Pyi.@)=2n+i+1-2E"(q)-2E"(g),
0 1 2 1
Pyr2(@) = Pir 1 (@ +12E(q) = 5 = 2E(q) ~ 4E5 " (@) + 265,
and for j = 3,4, 5 by:
(_l)ﬂqI/S o0 q(2m+1)(m+1)+ﬂ(m+1/2) ~ & qn(n+1)+i/n
H; . (q9) = ., H,(@=) ——,
A3 (1 =" &= (432 9l q; Do A Eo (=4; D2(q; 9
0 Q2m+1)m+im (_l)i’q—US 0 qn(n+2)+i'(n+l/2)
Higp=Yy -1 — H; ,(g) = :
i = (=4 Dn(d5 Doy = (1 =g & (832, )7 (a3 @)
1/8 © 1) (m+1)+A(m+1/2) —178 0 n(n+2)+4' (n+1/2)
Hiy(q) = —1 9 . H ()= —2 1 .
- (1 +q'"2)* &= (=325 900(q; Dy 3 (1 4+ g7 & (=32, 9)X(q; Qo
(4-13)

When (4, u) = (0, 0), this factorization can be connected to that in Garoufalidis and
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Zagier’sH181°0 G0 yging the following identities: [2314PPx A
@06 @D _ e 29"
@5 (1% 2(1-g"2)
—4:9)% (@D _ 6_767_1/8 (4-14)
N2 (A1 2 2(1 — —1/2)27’
@Dz (=775 P
¢k @@L _ e Egg

= = — T.
@D% (—¢7%9% T+ +q712)7

The first few terms of H /'fj(q) are given by

Hio@) = 144 +3¢" +7¢° +13¢° + - Hyo(@) = 144" +3¢° +7¢" +13¢° + -
H{ (@) = 1-49-8¢" -3¢ +3¢" + - Hy (@) = 1-49-5¢+¢ +7¢" + -
HE(@) = 2 —6q+64>+ 2224 +200g + - Hyy(q) = 2 —10g+ g2+ g0 1 Thgey .
’ 3 3 ’ 6 6 2 6
Hi (@) = ¢"(q+2¢" +4¢° + 64" + --) Hiy(q) = ¢ (g +2¢" +4¢4" + 647" + ---)
H+4(q) — 1+q3 _q4+3q5 _3q6+,,. H(;4(q) — 1+q2_q3+3q4_3q5+...
()S(q) — 611/8((]—2(]3/2+4q2—6q5/2+"') H(Is(q) — q—1/8(q_2q3/2+4q2_6q5/2+“.)
(4-15)

Theorem 4.3: For each j = 0,...,5, the sequence H, ;(¢q) for |[q| # 1and 4 € Z

satisfies the linear g-difference equation

Viro@ + 2,450 = (@ + 07 3,,4@) — 2q + 1) y343(9) (4-16)

Vi@ +2qy,,1(@)+qy,(q9) =0
Proof: We begin with the case j = 0 and |g| < 1, hence

qm(2m+l)+ﬂm

H,o(q)=H/ (q) = (- 1)i -
10 A0 b SO ACR q)zm

Since (¢; @), = [11=;(1 — ¢"), we have

0 o ) _ _
qﬂ qm(2m+1)+ﬂm _ Z qm(2m+1)+/1(m+1) Z (m 12m—1)+im
= (@GOG Do oz (G DT Doy et (@ D2 (@ Do
© —
qm(2m+1)+/1m (1 _ qm) (1 _ q2m l)(l _ q2m)

b RO NACHN S gm=1

Since 1 — ¢" = 0 when m = 0, we can replace the summation in the above equation from

m = 0to m = oo. Since

(1—g™*(1—g*" (1 -¢*™) e

q4m_1 _2ql—3m_q—2m+2ql—m+2q—m_q_zqm+q2m

(4-17)
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we obtain

00 m(2m+1)+Aim

qa
= (@ Dn(T5 Do

=‘IH,T_4’0(Q) + ZQH,T_&O((I) - H,T_zg()(q) - (2 + 2‘1)H;r_],0(4) - (IHZO(Q) + 2H,1++1,0(‘1) + HLQ‘O(‘I) .

¢ H} (@) =(=1)* (@ =2¢"" — ¢ +2¢"" + 247" — ¢~ 24" + ¢*")

This gives the g-difference equation for H, ;(q) when j = 0 and |g| < 1. Similarly one
proves the g-difference equation for the cases j = 0, 3,4, 5 and whenever |g| # 1.

For j =1 and |q| < 1, we have

; i m(2m+1)+Am 0
H,,(q) = Hf () = (-D* ), ———, , @),
’ (@ DRG Do

where

2m)

Paim(@ = 4m+ A+ 1-2E" () - 2E7"(g).

Hence

CIH,T_M(CI) + ZCIHI_M(Q) - HI_&](Q) - (2 + 24)HI_1’1(Q) - qHZI(CI) + ZHI_H’](Q) + HLZ’](CI)
o m2m+1)+im

==y ———g, (@),
,;)(q;q)i(q;q)zm *

where

1—

Gm@ =041 (@ = 20" 7D, 31 (@ — 42D 401 (@)

+ Q2429011 1m(@D — AP (@D = 20" a1 1 (@D + TP 1421 (D)
(4-18)

g&im@ = q'lHII(q). Noticing the

0o qm(2m+l)+/lm

We are going to show that (=1)* ¥'*°_ e y—
»4Im\4>4)2m

recursive relation that

0 (m+1) sm 0 m
m m—1 qs q q
E"@-E" @=) <1_ T ) = " = (419)
s=1 q q s=1 q
we convert p, | ,,(q) into the following form
2m—1 2m
_ (m=1) (2m-2) 2¢" | 2q 2q
Piim(@ =dm+ A+ 1-2E" "(q) = 2E;" “(9) + 1 . g t1C T

=4m— 1)+ A+ 1-2E"(q) = 2EP" (@) + f1 (@) + 4
=P 1m-1@ + f1.m(@) +4,
(4-20)
where

2qm 2q2m—1 2q2m
fl,m(q) = 1 _

Py s (4-21)

Substituting the (4-20) into (4-18), combining the common factors p; ; ,,—1(q) + f1,,(q)
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and applying the identity (4-17), we see that

1— m21_ 2m—1 1 - 2m
gimla) =L - M (@ + f1(@)

— (24" +2¢72" — 6(q + g™ + 4q + 10g™ — 6¢°™) .

Since

(1 —g"*(1 = g™ (1 - ¢*™)

o Sim@ = 2¢" 7" +2¢72" = 6(q+1)g ™" +49+10¢" 64",

we conclude that
(1—g™* (1 — g™ {1 - ¢*™

£1.m(Q) = e Pitm—1(a)-
Therefore
00 mQ2m+1)+im 00 (m—1)2m—1)+Aim
q q
(-1 gim(@ =(-D* ) Pitm-1(@)

= (@D (@ Domr

00 qm(2m+1)+ﬂm

= (@ D2 Do

=6 (@ D Doy
=(-1)"q* Piim(@ =4 H] (@),

as desired. Similarly one proves the g-difference equation for j = 1,2 and |gq| # 1, using

the recursive relation (4-19) and

(m) (m—1) < (s sgm - q"
E'(@9—E; (9 = ( - ) =) —sq¢" = ————. (4-22)
2 2 ; 1_qs l_qs ; (1_qm)2
This completes the proof. |
Consider the Wronskian

of the six solutions to the g-difference equation (4-16). We next give an orthogonality
property of the Wronskian, which implies that the six sequences of g-series form a funda-
mental solution set of (4-16) and satisfy quadratic relations.

Theorem 4.4: The determinant of the Wronskian is given by

det(Wy(q)) = 324" 7 . (4-24)
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The Wronskian satisfies the orthogonality property

00 3 0 0 -12 8 -4 2 0

010 0 0 8 —4 2 0 0

200 0 0 e |4 2 0 o0 0

VV,{(Q) 2 W_i_s(q )y =

000 -1 0 0 0 0 0 2 —4

0 00 i 0 0 0 2 —4 8 + 2¢**?

000 0 -1 0 2 —4 8+2¢"7 —12—4¢"" — 44"
(4-25)

A consequence of eq. (4-25) (in fact, of its (1, 6)-entry) is that the collection of g-

series H fj(q) satisfies the quadratic relation

3 D H3(@ = I @H; @)+ S L@ @) (4-26)

~ H (@) H5(q) + iHjA(q)H;A(q) ~ H} {(@H; 4(9) =0.

Proof: We assume |g| < 1 and give the proof for this case only; the proof for |g| >

1 is similar and is omitted. The method can be used to give a systematic proof of the

self-duality properties of the g-holonomic modules that appear in the refined quantum
modularity conjecture of knot complements or of closed 3-manifolds.

We first compute the determinant of the Wronskian W) (g). It is well-known that it

satisfies the first order linear g-difference equation281-emma4.7

det(W,,1(q)) — qdet(W,(q)) = 0.

It follows that det(W(q)) = q’lc(q) for some g-series c(g) independent of . We claim
that

det(W,(9)) = 32¢*T11"* 1+ 0(g**?), (4-27)

for all sufficiently large natural numbers A, which implies that c(q) = 32q”/ 4. To show

eq. (4-27), recall that W (q) = (Hj+i’j(q)>0<. g

S when |g| < 1. The definition of H j{j ()
L] K

implies that

H/-l_k,j(Q) = RZ-(‘I) + 0", (4-28)
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where RIJ (¢) and R} ;(q) are given by

A q/1+3
R+. = —1 : + i P} ‘:0’1’2@
L@ =ED <pg,,,o(q) m,,,l(l — +q)> J
1/8 14+4/2
q q
R} 4(9) = (=) ——>= :
’ (1-¢'?)21-¢q (429)
q/1+3
Rf,(@=1+ :
A4 (1+ g3 - q)?
R+ (q) _ q1/8 q1+/1/2
AN ED R
and
h q/1+2
R (q) = (-1 P, . + P, . , j=0,1,2,
M(Q) (=D < ,1,,,0(4) ,1,,,1(4)(1 I +q)> J
—1/8 A2
- _(_1\A q q
Ry 5@ =D (1—q-1221-¢
. (4-30)
q +2
R, (@=1+ ,
O =0
R (q) _ q—1/8 qll/z .
BT (147221 —g
Thus,
W(@) = R;(q) + O(¢°"), (4-31)

where R;(q) = (R,4; (@))o<; j<5- Since

det(W;(9)) + 0(¢**?) = det(R,(9)) + O(¢**?) = 32" + O(¢*%),  (4-32)
eq. (4-27) follows. It is noteworthy that the Eisenstein series &£,(q) which appear in the
entries of R,(g) cancel upon taking the determinant. The same happens in the entries of
the matrix (4-40) below.

This concludes the proof of (4-24). We next prove the orthogonality property (4-25)
following the method of(?°15¢¢ 23 By the g-difference equation (4-26), we have

Wi @) = A QWi@, W_,_1(a™") = AG, W_y (™), (4-33)
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where
0 1 0 0 0 0
0O 0 1 0 0 0
0 0 0 1 0 0
A(A,q) = (4-34)
0 0 0 0 1 0
0 0 0 0 0 1
—¢ =2q 1 2(1+q) q+q¢*™ -2
and
—2 q 2(0+¢q) 14+¢*2 =29 —q
1 0 0 0 0 0
3 e 0 1 0 0 0 0
AL, q) = A(-A-1,q7) =
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
Consider
—12 8 -4 2 0
8§ —4 2 0 0
-4 2 0 0 0
0O(4,q) =
2 0 0 0 2 —4
0O 0 0 2 —4 8 + 2¢7+?
0 0 2 —4 8+2¢" —12—4g"? —44'3

It is easy to see that the matrices A, Q and A (all with entries in the polynomial ring

Q[g*!, ¢**]) satisfy
AL )04, A4 +5,9) = QA+ 1,9). (4-35)
Note that all matrices above are invertible, with determinants
det(A(4, q) = q, det(A(4, q) = g, det(Q(4, q) = —64¢° 2. (4-36)
Using (4-33) and (4-35), we see that

W@ 00U+ 1,9) (W_,_e(a™™) = W@ 0k 9) (W_,_s(a™H ™)',
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hence Wi(q)_lQ(/l, q) (W_ ,1_5((1_1)"1 )T is independent of A. The claim is that we have

0 0 % 0 0
010 0 0
W@ ' 009 (W_,_s@™ ™) =D = 7 00 00 (4-37)
000 -10 0
000 O % 0
000 0 0 —1

Since we have seen that the left-hand side of (4-37) is independent of 4, it suffices
to show that
_ 1o\ T
Wi@™'0(.9) (W_,5@)™")" = D+ 0@, (4-38)
for any sufficiently large 4 € N. Equation (4-31), together with (4-24) gives that
W@ 0 a) (W, _5(a™)™)" + 0™ = R, (@04 9) (R_,5(a™)")" + 0™  (4-39)
and an explicit calculation shows that
_ e\ T
Ry@ 'O 9) (R_;_s(a™D7")" + 0@ = D + 0" (4-40)

where R_, s(¢”)7! + 0(g"?) can be computed by multiplying the adjugate of
R_ A_S(q_l) + O(¢*M?) with the inverse of its determinant (4-31). Equation (4-38) fol-
lows. n

The following theorem follows directly from theorem 4.2 and eq. (4-25), but states
a highly non-trivial result for matrix-valued holomorphic quantum modular form.

Theorem 4.5: (a) The matrix-valued function

0 0 -2 0 0 0
0 -1 0 0 0 0
- 0 0 0 00 T
Fl,/ll (T) = W_/ll_s(q ) 4 i W,{(q) (4_41)
0 0 0 0 5 0
i
0 0 -3 00
0 0 0 0 —i

defined for = = b> € C\R, has entries given by the descendant state integrals up to a
prefactor given by theorem 4.2, and therefore extends to a holomorphic function on the

cut plane C’.
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(b) The matrix-valued function

-2 0 0 0 00
0O -1 0 0 0 O
210 0 -z 0 0
W, (@) = (Wy@") . @ (4-42)
O 0 0 0 -3 0
0O 0 O =21 0 O
O o0 0 0 0 1

extends to a holomorphic function of ¢ € C’.

4.4.2 Stationary phase of the descendant state integral

The stationary phase is a well-known method of asymptotic analysis that can be

[30-31]

found in many classic books . For convenience, we define a renormalized version

of the descendant state integral eq. (4-6) given by

5 (A4 NG W L
Z((_273?7)(T) = (Q/CI)24 Z((_273?7)(T)~ (4'43)

R ’
We will determine the asymptotic expansion of Z ((f’z';})(r) as h := 2zit — 0 along
rays in the upper half plane (i.e., arg(z) = 6 € (—=, 7) is fixed) in this subsection.

It turns out that there are 6 critical points «
(@ —a-1)@+2e*—a-1)=0 (4-44)

in two Galois orbits of the cubic number fields with discriminants —23 and 49, respec-
tively. After a change of parametrization of these number fields (to match with the con-

ventions oft??! | these critical points are given by

a=—E4+&E,  E-41=0 (4-45a)
a=-1-n B+ -21-1=0. (4-45b)

A !’
The next theorem computes the stationary phase expansion of Z 8’2'1’3?7)(1) at each

critical point.
27id! log a

Theorem 4.6: The stationary phase of Z 8’2’1’3?7)@) isgivenbye™ 7 @@ (4, h), where

0

D el HRE (4-46)

1A(@) k=0

V0,0(@) A

O h) = e n ®D(A 1), ®W(A,h) =
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and

Voola) = 2Liy(—a) — Lir(a™2),
0,0 2 2 (4_47)
Ala) = =2¢° + 120 = 2a% — 16a — 10,

and ¢, (a, A) € Q(a)[A] are polynomials in A of degree 2k with coefficients in Q(a) with
co(a, 1) = 1 given explicitly by a formal Gaussian integration.
The first few terms of the asymptotic series are given below. Since there are two

number fields involved, we present the asymptotic series ®©)(4, #) separately for each
field. For a as in (4-45a), we have

2 Yo
& (4, h) = ge’ <1+( e T3 (leo U 17
\/i(—6§2 + 10 — 4) ( 46 92 92) (46 92 46) (4-48)

L 293 24 127 ¢ 681 >h+0(h2)>7

8464 2116° 8464

and for « as in (4-45b), we have

V0.0

5. o
H(@) - aer 1o 1Np (Lo 1 .3
b= m(”( (28” vy 28)'l * (28” 1+ i) 4a9)

1,1, 17 2
16" * 16" 168>h+0(h )>
We can give more terms when A = 0. For « as in (4-45a), we have
Yo.0
0. 7) = eh <1+<293€2+ 127 . 681>h
\/i(—6§2 +10& — 4) 8464 2116 8464 (4-50)
65537 ., 50607 2535 ) 2 3
+ | ==& - + n°+0o) |,
(62295045 62295045 778688 )
and for a as in (4-45b), we have
5 293 127 681
d©)(0,h) = ¢’ <1+<—§2+—§——>h
Vi—4Z + 21— 2) 8464 21167 8464 (4-51)
65537 ., 50607 2535 > 2 3
- + h°+ 0(n”) ).
(62295046 6229504ég 778688 ( )>

Proof (Proof of Theorem 4.6): Using the identity eq. (2-7) we convert the descendant

state integral into the following form,
1

IR T 24 . 2 -1
Z((iaz/l3)7)(h) — <2~> / q)b(x)Zq)b(zx _ cb)e—m(Zx—cb) +27l'(/1b—/1/b )x dx
= q R+i2+ie

(4-52)

2
_ / D,(x) e270b=2"5"x 4 (4-53)
R+ +ie D(—2x + ¢p)
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and then apply the approximation [>1¢d- (63

z & opq Bon(1/2) .
‘Db(%>=exp<,§0hz = L ‘”)

We begin with a change of variables x = ==, so that

2xbh’
2 - B, (1/2)
2 _ 2\ L 2n—12n . oz
q)b(x) = (Db <2n-b> €Xp <r§) h —(2n)' 2L12_2n( c )
and
—2z + 2xbc, o .oy Bon(172) . Cpins
Dy(—2x +¢p) = D, <T) ~ eXp <r§) h*" 1—(;’1)! Li,_,,(—e 2z+2 bcb)
- B, (1/2) . ok
_ 2n—1"2n 2z+
= €Xp <Z n (2n)' L12_2n(e 2)> .
n=0
Using the identity
: - o Lip o, i(€7>)
L12_2n(e 2z+S) — 2 nTsk’
k=0
we have

5] . -2z k
. _2z4h Liy_p,_r (™) ( h >
L — 2) = _ | - .
p-an(=¢ ) kz‘:o k! 2

Collecting the above equalities up, we obtain

. sy

! /exp <Az + 2rid z+V(z, h)> dz
\V2zin h

g o1 Ba12)) 1By, (12) Lip_p, 4 (6779 1
V(z,h) = h2n 12"—2L oz p2n+k—122n " 1
=R ,Z‘) (2n)! ih_pu(—€%) néo or - .

(4,4
Z -23 7)(h)

where

- -2
Z A D e T

@n)! = Qml @k 2%

+ Z h2n+2kB2n(1/2) Lil—Zn—Zk(e_zz) 1 >

k=0 (2n)! Qk+1)!  22k+1

n

N (B2 By, 51 (1/2) Liy_,,(e7%%)
Zh < “am Hn=e) IZ()(Zn—Zk)!(Zk)! 2%k

+ 2 pn | _ i By, i (112)  Lij_p,(e™)
n=0 & 2n =202k + 1! 2%+ :
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Therefore, if we define

v (Z)__i By, (1/2)  Lij_,(e7*)
o 2n =212k + 1)1 2%+ 7

Bk=01/2 > B 1/2) Li 2 (359
Vanl®) = %mz‘h(_ez) B kz_:‘) 2n 2—_22;;5 !(211)! 12_22n2(ke S
then V (z,h) = Y o0, A"V, (z), hence
ZA((f’;;)D(fz) SO / exp (/lz + 2aid z+ i h"‘an(z)> dz.
o \/ﬁ h n=0
Solving % (271A'z + Vy(2)) = 0, we find that the critical point equation is
@—-a-D@+2a>—a-1)=0, (a=c¢?. (4-55)

The expansion V,(z) = Y. (z — log a)"V, n(loga) at a critical point z = log & thus

gives
. V0,0+27riﬂ/ loga
5 (2.4 la’e " 2 : Z—1_m n—1+2 m
Z((f’zg?n(fz) ~ a—./derUvzy exp </1h2y+ Zflz ly Vo T Z Rty Vnm>
V2xi m>3 n21,m>0
— eZ/ri}.hhwa (AI)(A, h)
(4-56)
1
where the change of variables z — loga + A2y is applied, and
Voo = 2Liy(—a) — Liy(a™?),
Vo = —2xid,
Vip = —sLij(a™) = 1+ log(1 —a™?)
10 = 75+h ) g )
. . o’ —a+2
1/02 = Llo(—(l) - ZLIO((I 2) = —m = (XS - (14 - 7(13 + (12 +4a + 5, (4_57)
1 (B, (172) . . ooy Bua12)
=— 2L —a)— (=2)"L ,

_ P By (12)
Vanstn = = M@ );)(2n—2k)!(2k+1)!22k+1'

Note that for n = 1 and m = 0, we have s V"Vym = V10- Expand the exponen-

tial in the integrand, collect /’s and use the formal Gaussian integrals, we obtain

;Yoo Vio 5 Yo

N h S h
b4, 1) = T (14 O(h) = T—— (1 + O(h))

211/0,2 lA

where

Won 2022
=02 20(@ —atd) s 503 002 16a — 10,
e2V10 (a = D2(a+1)?
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This finishes the proof. i
When « satisfies (4-45a), we have

Vip= %log(l - &, Voo = —3E2 + 2¢, A = —6&2 +10& — 4 (4-58)
whereas when a satisfies (4-45b), we have
Vio= %10%072 +n-=2), Vo,=-n"=-3n+3,  A=-dp+2n-2. (4-59)

Computing out the formal Gaussian integrals in (4-56), we obtain (4-49) and (4-51).
Naturally, due to the factorization theorem 4.2, one expects the stationary phase to
be related to the g-series H f,j(q). Using Richardson and Zagier’s extrapolation meth-
ods!!722] we can extrapolate numerically to obtain the coefficients of the asymptotic
expansions of the g-series H;fj(q). We find that the coefficients ought to match one of
the <i>(")(h) series, up to some elementary factors, for some value of o, which of course

depends on the ray. For instance, when arg(r) = z/5, we find numerically that

1724 i -1/24 i
Hyo(a) = <2> et & (n), Hgo(q) = <2> 7e 4 &@)(=h),
’ q ’ q
1724 i -1/24 i
Hy\(9) = <2> e ®D(n), Hy () = <€> e 9 (=),
’ q ’ q
q 124 5 4 q 24
Hyo(q) = <5> 3e @M, Hiy@ = <5> e o),
q 124 4 q -4
Hys(q) = <5> e M), His@) = <5> Se (=),
7 (g 124 g 7 (g -1/24 i
Hy(9) = q°3 (—) 2¢O (h), Hy,(q) = §F (—) 2e” 4 O (=),
’ q ’ q
7 (g 124 g 7 (g -1/24 i
Hys(q) = q°3 (—) e”4&(n), Hyiq) = G¢ (—) e O (=n).
’ q ’ q

(4-60)
Here ®@(#) :== ®©)(0, h) and o; for j = 1,...,6 are the six roots of the polyno-

mial (4-44) with the numerical values
o, = —0.662 — 0.562i, o, = —0.662 + 0.562i, o3 = 1.325, (4-61)

corresponding to the field (4-45a) and
o, = —2.247, o5 = —0.555, o = 0.802, (4-62)

corresponding to the field (4-45b), respectively. Similar phenomena can be observed for

other values of arguments, with slight variations on the factors (usually only by a sign).
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The correspondence between the g-series H, (;—“j(q) and the roots ¢;’s is presented in table 4-
1.

H (q) Hy (q)
j |ag(x) | o j |ag(x2) | o
[1,23] | o [1,20] | o,
0 | [33,67] | o 0 | [2575] |o,
[77.99] | o, [80,99] | o,
[4,36] | o [4,36] | o,
1| [47,53] | o 1| [47,53] | o,
[64,96] | o, [82,97] | o,
[4.24] | o [4,20] | o,
2 | [33,67] | o 2 | [26,74] | o
[76,96] | o, [81,96] | o,
[1,23] | o [1,20] | o,
3| [33,67] | o 3| 25,75 | o,
[77,99] | o, [80,99] | o,
4 | [15.85] | o 4 | [15.85] | oy
5| [15.85] | o 5| [15.85] | oy

Table 4-1 Correspondence between H(;—tj (@)’s and ¢

Note that inserting the asymptotics (4-60) to the quadratic relation (4-26), one simply
obtains that 0 = 0.
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