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Theorem (Kashaev, 2019)

Let R be a rigid R-matrix, then the corresponding
Reshetikhin–Turaev functor gives an End(V )-valued invariant of
oriented knots.

Rigid R-matrix: an element R in Aut(V ⊗ V ) satisfying:

Yang–Baxter equation:
(R ⊗ I ) ◦ (I ⊗ R) ◦ (R ⊗ I ) = (I ⊗ R) ◦ (R ⊗ I ) ◦ (I ⊗ R).
Rigidity: the partial transposes

R̃±1 := (ε⊗ I ⊗ I ) ◦ (I ⊗ R±1 ⊗ I ) ◦ (I ⊗ I ⊗ η) are invertible.
ε : V ⊗V → F and η : F → V ⊗V : the evaluation and coevaluation maps.

Reshetikhin–Turaev functor: a functor (determined by R)
from the category of tangles to the category of vector spaces.
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Theorem (Garoufalidis & Kashaev, 2023)

Given a braided Hopf algebra with automorphisms, one can
construct a rigid R-matrix.

The procedure:
Braided

Hopf algebras

with autos

 →


Braided

Yetter–Drinfel’d

modules with autos

 →

{
Rigid

R-matrices

}
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Summary: a systematic source of knot invariants:
Braided

Hopf algebras

with autos

 G & K, 2023−−−−−−−→

{
Rigid

R-matrices

}
K, 2019−−−−→ {Knot invariants}

One source of braided Hopf algebras: Nichols algebras.

Nichols algebras of rank 1: recovers the colored Jones
polynomials and the ADO polynomials.

Nichols algebras of rank 2: recovers the Links–Gould
polynomial, and gives the Vn-polynomials.
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Reshetikhin–Turaev functor:

7→ R, 7→ R−1,

or 7→ I , 7→ ε, 7→ η.

For local extrema going from left to right:

⇝ , ⇝ ,

7→
(
R̃−1

)−1
, 7→

(
R̃
)−1

.

For Vn-polynomials, ε ◦
(
R̃−1

)−1
=

(
R̃−1

)−1
◦ η = ε ◦

(
R̃
)−1

=
(
R̃
)−1

◦ η is
a diagonalizable matrix with only ±1’s on the diagonal.
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Example: the 41 knot

⇝
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Example: the 41 knot

7→

V

↑
(
(ε ⊗ I ) ◦

(
I ⊗ R−1

))
⊗

(
ε ◦

(
R̃
)−1

)
V⊗5

↑ I ⊗ I ⊗ R ⊗ I

V⊗5

↑ I ⊗ R−1 ⊗ I ⊗ I

V⊗5

↑
((

R̃−1
)−1

◦ η

)
⊗ ((R ⊗ I ) ◦ (I ⊗ η))

V
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Example: the 41 knot

7→

V

↑
(
(ε ⊗ I ) ◦

(
I ⊗ R−1

))
⊗

(
ε ◦

(
R̃
)−1

)
V⊗5

↑ I ⊗ I ⊗ R ⊗ I

V⊗5
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V⊗5

↑
((

R̃−1
)−1

◦ η

)
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V

Fact

V is a submodule of an algebra over F, and 1 ∈ V is an
eigenvector of the above End(V )-valued invariant.
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Fix a basis B := {ei} of V , R±1 become matrices whose entries

can be denoted by
(
R±1

)ek⊗el
ei⊗ej

.

To compute the eigenvalue of the End(V )-valued invariant is to
evaluate a sum of the form∑

a1,··· ,a2c−1∈B
a0=a2c=1

±
(
R±1

)a2⊗a3
a0⊗a1

· · ·
(
R±1

)a2c−1⊗a2c
a2c−3⊗a2c−2︸ ︷︷ ︸

a product of length c

,

where c is the number of crossings of the knot. This sum is called
the state sum.
Therefore, it requires

c · (dimV )2c−1

times of computations to compute the eigenvalue.
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For Vn-polynomials, dimV = 4n.

With n = 2, for the simplest knot 31, we have

c · (dimV )2c−1 = 98,304.

This is how you know that you wouldn’t want to compute it by hand.

For c = 12,

c · (dimV )2c−1 = 7,083,549,724,304,467,820,544,

and for c = 15,

c · (dimV )2c−1 = 2,321,137,573,660,088,015,435,857,920.

Worse, the entries
(
R±1

)ek⊗el
ei⊗ej

are polynomials in two variables, instead of scalars.

We computed the V2-polynomials for all knots with ≤ 15
crossings, and more.
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To optimize the computation:

The R-matrix is sparse: a divide and conquer method sees the
0’s at each step and eliminates a lot of terms.

n Nonzero elements (%) #R

2 177 (4.3%) 4096
3 585 (2.8%) 20,736
4 1377 (2.1%) 65,536

Use optimized tensor contraction path.
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Example: the 41 knot again

⇝

R
a6⊗a1
a0⊗a5

((R̃)−1η)
a3
a3

(R−1)
a7⊗a4
a3⊗a6

R
a2⊗a5
a4⊗a1

(ε(R̃−1)−1)
a5
a5

(R−1)
a3⊗a8
a7⊗a2

a0

a1

a2a3

a4 a5

a6

a7

a8
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⇝

R
a6⊗a1
a0⊗a5

∑
a3,a7∈B

(R−1)
a3⊗a8
a7⊗a2

((R̃)−1
η)a3a3

(R−1)
a7⊗a4
a3⊗a6

R
a2⊗a5
a4⊗a1

(ε(R̃−1)−1)
a5
a5

a0

a1

a2

a4 a5

a6

a8
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Let VK ,n(t, q) ∈ Z[t±1, q±1] be the Vn-polynomial of knot K in
variables t and q.

Symmetry:

VK ,n(t, q) = VK ,n(t
−1, q), VK ,n(t, q) = VK ,n(t, q

−1)

Specialization (conjecturally):

VK ,n(q
n/2, q) = 1, VK ,n(t, 1) = ∆K (t)

2

where ∆K (t) is the Alexander polynomial.

Genus bound (conjecturally):

degt VK ,n(t, q) ≤ 4g(K )

where g(K ) is Seifert genus of K .
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Theorems

(GKKST) The V1-polynomial is the Links–Gould polynomial.

(KT) The Links–Gould polynomial satisfies both the
specialization and the genus bound.
VK ,2 is determined by

VK,2(t
2
, q2) = c2,0(t, q)VK(2,1),1(t, q) + c2,−1(t, q)VK,1(t

2q−1
, q) + c2,1(t, q)VK,1(t

2q, q)

where K (2, 1) is the (2, 1)-parallel of K .

Since g(K (2, 1)) = 2g(K ), the last statement implies that V2 also
satisfies both the specialization and the genus bound.
Conjecturally, Vn-polynomials satisfy relations similar to the one above.
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Question

When is the equality achieved in the genus bound inequality?

degt VK ,n(t, q) ≤ 4g(K )

With the specialization, we have

2 degt ∆K (t) ≤ degt VK ,n(t, q) ≤ 4g(K ).

Since Alexander polynomials satisfy degt ∆K (t) ≤ 2g(K ), a
sufficient condition:

degt ∆K (t) = 2g(K ). (1)

We call knots satisfying eq. (1) tight, and others loose.
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There are no loose knots with ≤ 10 crossings.

crossings 11 12 13 14 15 16
Knots 552 2176 9988 46972 253293 1388705

Loose knots 7 29 208 1220 6319 48174

Table: Knot counts, up to mirror image

polynomial V1 V2 V3 V4

Knots ≤ 15 ≤ 15 ≤ 11 ≤ 10
Loose knots ≤ 16 ≤ 16

Table: Computed knots for each Vn

crossings 11 12 13 14 15 16
V1 genus bound < 7 20 173 974 5025 37205
V2 genus bound < 0 0 0 0 0 0

Table: Non-sharp genus bound counts
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Theorem (Garoufalidis & Li, 2024)

The genus bound inequality is an equality for V2-polynomials for
all 1,701,936 knots with ≤ 16 crossings.

In other words, the V2-polynomials (conjecturally) detect the genus
– an achievement only the knot Floer homology has made before.

Question

Does the V2-polynomials actually detect the genus of knots? Why?
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Question

When do two knots have equal V2 polynomial?
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Question

When do two knots have equal V2 polynomial?

crossings ≤ 11 12 13 14 15

pairs 0 3 25 187 2324

triples 0 0 0 1 38

Table: Number of V2-equivalence classes of size more than 1 (up to mirror image).
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Question

When do two knots have equal V2 polynomial?

crossings ≤ 11 12 13 14 15

pairs 0 3 25 187 2324

triples 0 0 0 1 38

Table: Number of V2-equivalence classes of size more than 1 (up to mirror image).

Theorem (Garoufalidis & Li, 2024)

All knots with ≤ 15 crossings in the same V2-equivalence classes

have equal HFK and equal Khovanov Homology,

are Conway mutant knots to each other, in particular they
have equal volumes, trace field, colored Jones polynomials,
ADO polynomials and HOMFLY polynomial.
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12n364 12n365
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Theorem (Garoufalidis & Li, 2024)

All knots with ≤ 15 crossings in the same V2-equivalence classes

have equal HFK and equal Khovanov Homology,

are Conway mutant knots to each other, in particular they
have equal volumes, trace field, colored Jones polynomials,
ADO polynomials and HOMFLY polynomial.

crossings 11 12 13 14 15

V2-equiv classes 0 3 25 188 2362

mutant classes 16 75 774 4435 29049

Table: Number of nontrivial V2-equiv classes versus Conway mutant classes.
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Theorem (Garoufalidis & Li, 2024)

All knots with ≤ 15 crossings in the same V2-equivalence classes

have equal HFK and equal Khovanov Homology,

are Conway mutant knots to each other, in particular they
have equal volumes, trace field, colored Jones polynomials,
ADO polynomials and HOMFLY polynomial.

Question

Are V2-equivalent knots always Conway mutant? Do they always
have equal HFK and equal Khovanov Homology? Why?
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Question

Are V2-equivalent knots always Conway mutant? Do they always
have equal HFK and equal Khovanov Homology? Why?

A partial answer: most of them are HFK-thin and Khovanov-thin,
for which equal HFK and equal Khovanov Homology follows given
the mutant condition.
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Question

Are V2-equivalent knots always Conway mutant? Do they always
have equal HFK and equal Khovanov Homology? Why?

A partial answer: most of them are HFK-thin and Khovanov-thin,
for which equal HFK and equal Khovanov Homology follows given
the mutant condition.

total tight & thin tight & thick loose & thick

2578 1877 457 244

Table: Number of nontrivial V2-equiv classes in each flavor, up to 15 crossings.
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A Conspiracy Theory:

Proposition

For all alternating knots with ≤ 15 crossings, we have

V1(t,−q),V2(t,−q) ∈ Z≥0[t
±1, q±1].

Question

Does this indicate a categorification of V1 and V2?
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