イロト イボト イヨト イヨト

UIUC

Multivariable knot polynomials, the V_n -polynomials, and their patterns

Shana Y. Li

University of Illinois, Urbana-Champaign

April 2025

Joint work with Stavros Garoufalidis

Computation of the *V_n*-polynomial

Patterns of the V_n -polynomials

< ロ > < 回 > < 回 > < 回 > < 回 >

3

UIUC

Table of Contents

1 Garoufalidis & Kashaev's multivariable knot polynomials

2 Computation of the V_n -polynomials

3 Patterns of the V_n -polynomials

Shana Li

Computation of the *V_n*-polynomial

Patterns of the V_n -polynomials

(日) (四) (三) (三)

UIUC

Table of Contents

1 Garoufalidis & Kashaev's multivariable knot polynomials

2 Computation of the V_n -polynomials

3 Patterns of the V_n -polynomials

Shana Li

Let R be a rigid R-matrix, then the corresponding Reshetikhin–Turaev functor gives an End(V)-valued invariant of oriented knots.

イロト イヨト イヨト イヨト

Let R be a rigid R-matrix, then the corresponding Reshetikhin–Turaev functor gives an End(V)-valued invariant of oriented knots.

Rigid *R*-matrix: an element *R* in Aut($V \otimes V$) satisfying:

イロト イロト イヨト イヨト

Let R be a rigid R-matrix, then the corresponding Reshetikhin–Turaev functor gives an End(V)-valued invariant of oriented knots.

- Rigid *R*-matrix: an element *R* in Aut($V \otimes V$) satisfying:
 - Yang-Baxter equation: $(R \otimes I) \circ (I \otimes R) \circ (R \otimes I) = (I \otimes R) \circ (R \otimes I) \circ (I \otimes R).$

イロン イヨン イヨン ・

Let R be a rigid R-matrix, then the corresponding Reshetikhin–Turaev functor gives an End(V)-valued invariant of oriented knots.

- Rigid *R*-matrix: an element *R* in Aut($V \otimes V$) satisfying:
 - Yang-Baxter equation: $(R \otimes I) \circ (I \otimes R) \circ (R \otimes I) = (I \otimes R) \circ (R \otimes I) \circ (I \otimes R).$
 - Rigidity: the partial transposes $\widetilde{R^{\pm 1}} := (\varepsilon \otimes I \otimes I) \circ (I \otimes R^{\pm 1} \otimes I) \circ (I \otimes I \otimes \eta)$ are invertible. $\varepsilon: V \otimes V \to \mathbb{F}$ and $\eta: \mathbb{F} \to V \otimes V$: the evaluation and coevaluation maps.

3

ヘロト ヘロト ヘヨト ヘヨト

Let R be a rigid R-matrix, then the corresponding Reshetikhin–Turaev functor gives an End(V)-valued invariant of oriented knots.

- Rigid *R*-matrix: an element *R* in Aut($V \otimes V$) satisfying:
 - Yang–Baxter equation: $(R \otimes I) \circ (I \otimes R) \circ (R \otimes I) = (I \otimes R) \circ (R \otimes I) \circ (I \otimes R).$
 - Rigidity: the partial transposes $\widetilde{R^{\pm 1}} := (\varepsilon \otimes I \otimes I) \circ (I \otimes R^{\pm 1} \otimes I) \circ (I \otimes I \otimes \eta)$ are invertible. $\varepsilon: V \otimes V \to \mathbb{F}$ and $\eta: \mathbb{F} \to V \otimes V$: the evaluation and coevaluation maps.
- Reshetikhin-Turaev functor: a functor (determined by R) from the category of tangles to the category of vector spaces.

э

イロト 不得 トイヨト イヨト

Theorem (Garoufalidis & Kashaev, 2023)

Given a braided Hopf algebra with automorphisms, one can construct a rigid R-matrix.

イロト イロト イヨト イヨト

イロト イヨト イヨト イヨト

æ

UIUC

Theorem (Garoufalidis & Kashaev, 2023)

Given a braided Hopf algebra with automorphisms, one can construct a rigid R-matrix.

The procedure:

$$\begin{cases} \mathsf{Braided} \\ \mathsf{Hopf algebras} \\ \mathsf{with autos} \end{cases} \rightarrow \begin{cases} \mathsf{Braided} \\ \mathsf{Yetter-Drinfel'd} \\ \mathsf{modules with autos} \end{cases} \rightarrow \begin{cases} \mathsf{Rigid} \\ \mathsf{R}\text{-matrices} \end{cases}$$

Summary: a systematic source of knot invariants:

$$\begin{cases} \mathsf{Braided} \\ \mathsf{Hopf algebras} \\ \mathsf{with autos} \end{cases} \xrightarrow{\mathsf{G \& K, 2023}} \begin{cases} \mathsf{Rigid} \\ \mathsf{R}\text{-matrices} \end{cases} \xrightarrow{\mathsf{K, 2019}} \{\mathsf{Knot invariants}\} \end{cases}$$

Computation of the V_n-polynomials

イロト イヨト イヨト イヨト

UIUC

Summary: a systematic source of knot invariants:

$$\begin{cases} \mathsf{Braided} \\ \mathsf{Hopf algebras} \\ \mathsf{with autos} \end{cases} \xrightarrow{\mathsf{G \& K, 2023}} \begin{cases} \mathsf{Rigid} \\ \mathsf{R}\mathsf{-matrices} \end{cases} \xrightarrow{\mathsf{K, 2019}} \{\mathsf{Knot invariants}\} \end{cases}$$

One source of braided Hopf algebras: Nichols algebras.

Summary: a systematic source of knot invariants:

$$\left\{ \begin{array}{l} \mathsf{Braided} \\ \mathsf{Hopf algebras} \\ \mathsf{with autos} \end{array} \right\} \xrightarrow{\mathsf{G \& K, 2023}} \left\{ \begin{array}{l} \mathsf{Rigid} \\ \mathsf{R}\text{-matrices} \end{array} \right\} \xrightarrow{\mathsf{K, 2019}} \{\mathsf{Knot invariants} \}$$

One source of braided Hopf algebras: Nichols algebras.

 Nichols algebras of rank 1: recovers the colored Jones polynomials and the ADO polynomials.

イロト イボト イヨト イヨト

イロト イボト イヨト イヨト

UIUC

Summary: a systematic source of knot invariants:

$$\left\{ \begin{array}{l} \mathsf{Braided} \\ \mathsf{Hopf algebras} \\ \mathsf{with autos} \end{array} \right\} \xrightarrow{\mathsf{G \& K, 2023}} \left\{ \begin{array}{l} \mathsf{Rigid} \\ \mathsf{R}\text{-matrices} \end{array} \right\} \xrightarrow{\mathsf{K, 2019}} \{\mathsf{Knot invariants} \}$$

One source of braided Hopf algebras: Nichols algebras.

- Nichols algebras of rank 1: recovers the colored Jones polynomials and the ADO polynomials.
- Nichols algebras of rank 2: recovers the Links–Gould polynomial, and gives the V_n-polynomials.

Patterns of the V_n -polynomials

< ロ > < 回 > < 回 > < 回 > < 回 >

UIUC

Table of Contents

1 Garoufalidis & Kashaev's multivariable knot polynomials

2 Computation of the V_n -polynomials

3 Patterns of the V_n -polynomials

Shana Li

Patterns of the *V_n*-polynomials

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

UIUC

Reshetikhin-Turaev functor:

Patterns of the V_n -polynomials

< ロ > < 回 > < 回 > < 回 > < 回 >

UIUC

Reshetikhin-Turaev functor:

For local extrema going from left to right:

Patterns of the V_n -polynomials

Reshetikhin-Turaev functor:

For local extrema going from left to right:

For V_n -polynomials, $\varepsilon \circ \left(\widetilde{R^{-1}}\right)^{-1} = \left(\widetilde{R^{-1}}\right)^{-1} \circ \eta = \varepsilon \circ \left(\widetilde{R}\right)^{-1} = \left(\widetilde{R}\right)^{-1} \circ \eta$ is a diagonalizable matrix with only ± 1 's on the diagonal.

Shana Li

Patterns of the V_n -polynomials

Example: the 4_1 knot

 \rightarrow

Patterns of the V_n -polynomials

Example: the 4_1 knot

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

UIUC

Shana Li

 \rightarrow

Patterns of the V_n -polynomials

Example: the 4_1 knot

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 - のへで

UIUC

Shana Li

Example: the 4_1 knot

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

UIUC

Shana Li

Patterns of the V_n -polynomials

Example: the 4_1 knot

æ

< ロ > < 回 > < 回 > < 回 > < 回 >

Shana Li

Patterns of the V_n -polynomials

UIUC

Example: the 4_1 knot

Fact

V is a submodule of an algebra over \mathbb{F} , and $1 \in V$ is an eigenvector of the above $\operatorname{End}(V)$ -valued invariant.

Shana Li

(a)

æ

UIUC

Fix a basis $\mathcal{B} := \{e_i\}$ of V, $R^{\pm 1}$ become matrices whose entries can be denoted by $(R^{\pm 1})_{e_i \otimes e_i}^{e_k \otimes e_l}$.

Shana Li

Fix a basis $\mathcal{B} := \{e_i\}$ of V, $R^{\pm 1}$ become matrices whose entries can be denoted by $(R^{\pm 1})_{e_i \otimes e_i}^{e_k \otimes e_l}$.

To compute the eigenvalue of the End(V)-valued invariant is to evaluate a sum of the form

$$\sum_{\substack{a_1,\cdots,a_{2c-1}\in\mathcal{B}\\a_0=a_{2c}=1}}\pm\underbrace{\left(R^{\pm 1}\right)_{a_0\otimes a_1}^{a_2\otimes a_3}\cdots\left(R^{\pm 1}\right)_{a_{2c-3}\otimes a_{2c-2}}^{a_{2c-1}\otimes a_{2c}}}_{\text{a product of length }c},$$

where c is the number of crossings of the knot. This sum is called the *state sum*.

イロト イボト イヨト イヨト

イロト イボト イヨト イヨト

UIUC

Fix a basis $\mathcal{B} := \{e_i\}$ of V, $R^{\pm 1}$ become matrices whose entries can be denoted by $(R^{\pm 1})_{e_i \otimes e_i}^{e_k \otimes e_l}$.

To compute the eigenvalue of the End(V)-valued invariant is to evaluate a sum of the form

$$\sum_{\substack{a_1,\cdots,a_{2c-1}\in\mathcal{B}\\a_0=a_{2c}=1}}\pm\underbrace{\left(R^{\pm 1}\right)^{a_2\otimes a_3}_{a_0\otimes a_1}\cdots\left(R^{\pm 1}\right)^{a_{2c-1}\otimes a_{2c}}_{a_{2c-3}\otimes a_{2c-2}}}_{\text{a product of length }c},$$

where c is the number of crossings of the knot. This sum is called the *state sum*.

Therefore, it requires

$$c \cdot (\dim V)^{2c-1}$$

times of computations to compute the eigenvalue.

Shana Li

Patterns of the *V_n*-polynomials

For V_n -polynomials, dim V = 4n.

▲□▶▲□▶▲目▶▲目▶ 目 のへの

UIUC

Shana Li

(a)

æ

UIUC

For V_n -polynomials, dim V = 4n. With n = 2, for the simplest knot 3_1 , we have

$$c \cdot (\dim V)^{2c-1} = 98,304.$$

(a)

UIUC

For V_n -polynomials, dim V = 4n. With n = 2, for the simplest knot 3_1 , we have

$$c \cdot (\dim V)^{2c-1} = 98,304.$$

This is how you know that you wouldn't want to compute it by hand.

Shana Li

For V_n -polynomials, dim V = 4n. With n = 2, for the simplest knot 3_1 , we have

$$c \cdot (\dim V)^{2c-1} = 98,304.$$

This is how you know that you wouldn't want to compute it by hand. For c=12,

(a)

(a)

UIUC

For V_n -polynomials, dim V = 4n. With n = 2, for the simplest knot 3_1 , we have

$$c \cdot (\dim V)^{2c-1} = 98,304.$$

This is how you know that you wouldn't want to compute it by hand. For c=12,

$$c \cdot (\dim V)^{2c-1} = 7,083,549,724,304,467,820,544,$$

(a)

UIUC

For V_n -polynomials, dim V = 4n. With n = 2, for the simplest knot 3_1 , we have

$$c \cdot (\dim V)^{2c-1} = 98,304.$$

This is how you know that you wouldn't want to compute it by hand. For c = 12,

$$c \cdot (\dim V)^{2c-1} = 7,083,549,724,304,467,820,544,$$

and for c = 15,

イロン イ団 と イヨン イヨン

UIUC

For V_n -polynomials, dim V = 4n. With n = 2, for the simplest knot 3_1 , we have

$$c \cdot (\dim V)^{2c-1} = 98,304.$$

This is how you know that you wouldn't want to compute it by hand. For c=12,

$$c \cdot (\dim V)^{2c-1} = 7,083,549,724,304,467,820,544,$$

and for c = 15,

 $c \cdot (\dim V)^{2c-1} = 2,321,137,573,660,088,015,435,857,920.$

イロン イ団 と イヨン イヨン

UIUC

For V_n -polynomials, dim V = 4n. With n = 2, for the simplest knot 3_1 , we have

$$c \cdot (\dim V)^{2c-1} = 98,304.$$

This is how you know that you wouldn't want to compute it by hand. For c=12,

$$c \cdot (\dim V)^{2c-1} = 7,083,549,724,304,467,820,544,$$

and for c = 15,

 $c \cdot (\dim V)^{2c-1} = 2,321,137,573,660,088,015,435,857,920.$

Worse, the entries $(R^{\pm 1})_{e_i\otimes e_j}^{e_k\otimes e_l}$ are polynomials in two variables, instead of scalars.

Shana Li

イロト 不同 トイヨト イヨト

UIUC

For V_n -polynomials, dim V = 4n. With n = 2, for the simplest knot 3_1 , we have

$$c \cdot (\dim V)^{2c-1} = 98,304.$$

This is how you know that you wouldn't want to compute it by hand. For c=12,

$$c \cdot (\dim V)^{2c-1} = 7,083,549,724,304,467,820,544,$$

and for c = 15,

 $c \cdot (\dim V)^{2c-1} = 2,321,137,573,660,088,015,435,857,920.$

Worse, the entries $(R^{\pm 1})_{\substack{e_i\otimes e_i\\e_j\otimes e_j}}^{e_k\otimes e_i}$ are polynomials in two variables, instead of scalars. We computed the V_2 -polynomials for all knots with ≤ 15 crossings, and more.

To optimize the computation:

UIUC

・ロト ・四ト ・ヨト ・ヨト

UIUC

To optimize the computation:

• The *R*-matrix is sparse: a divide and conquer method sees the 0's at each step and eliminates a lot of terms.

n	Nonzero elements (%)	#R
2	177 (4.3%)	4096
3	585 (2.8%)	20,736
4	1377 (2.1%)	65,536

イロト イボト イヨト イヨト

UIUC

To optimize the computation:

• The *R*-matrix is sparse: a divide and conquer method sees the 0's at each step and eliminates a lot of terms.

n	Nonzero elements (%)	#R
2	177 (4.3%)	4096
3	585 (2.8%)	20,736
4	1377 (2.1%)	65,536

Use optimized tensor contraction path.

Patterns of the V_n -polynomials

Example: the 4_1 knot again

(a)

æ

UIUC

Shana Li

Patterns of the *V_n*-polynomials

(a)

æ

UIUC

Example: the 4_1 knot again

Shana Li

Computation of the *V_n*-polynomials

Patterns of the V_n -polynomials

Table of Contents

1 Garoufalidis & Kashaev's multivariable knot polynomials

2 Computation of the V_n-polynomials

3 Patterns of the V_n -polynomials

Shana Li

UIUC

(a)

Let $V_{K,n}(t,q) \in \mathbb{Z}[t^{\pm 1},q^{\pm 1}]$ be the V_n -polynomial of knot K in variables t and q.

Shana Li

Multivariable knot polynomials, the V_n -polynomials, and their patterns

・ロト・西ト・山田・山田・ 白・ シック

UIUC

イロト イヨト イヨト イヨト

æ

UIUC

Let $V_{K,n}(t,q) \in \mathbb{Z}[t^{\pm 1},q^{\pm 1}]$ be the V_n -polynomial of knot K in variables t and q.

Symmetry:

$$V_{\mathcal{K},n}(t,q) = V_{\mathcal{K},n}(t^{-1},q), \quad V_{\overline{\mathcal{K}},n}(t,q) = V_{\mathcal{K},n}(t,q^{-1})$$

イロト イボト イヨト イヨト

UIUC

Let $V_{K,n}(t,q) \in \mathbb{Z}[t^{\pm 1},q^{\pm 1}]$ be the V_n -polynomial of knot K in variables t and q.

Symmetry:

 $V_{\mathcal{K},n}(t,q) = V_{\mathcal{K},n}(t^{-1},q), \quad V_{\overline{\mathcal{K}},n}(t,q) = V_{\mathcal{K},n}(t,q^{-1})$

Specialization (conjecturally):

$$V_{\mathcal{K},n}(q^{n/2},q)=1, \quad V_{\mathcal{K},n}(t,1)=\Delta_{\mathcal{K}}(t)^2$$

where $\Delta_{\mathcal{K}}(t)$ is the Alexander polynomial.

イロト イボト イヨト イヨト

UIUC

Let $V_{K,n}(t,q) \in \mathbb{Z}[t^{\pm 1},q^{\pm 1}]$ be the V_n -polynomial of knot K in variables t and q.

Symmetry:

 $V_{\mathcal{K},n}(t,q) = V_{\mathcal{K},n}(t^{-1},q), \quad V_{\overline{\mathcal{K}},n}(t,q) = V_{\mathcal{K},n}(t,q^{-1})$

Specialization (conjecturally):

$$V_{\mathcal{K},n}(q^{n/2},q)=1, \quad V_{\mathcal{K},n}(t,1)=\Delta_{\mathcal{K}}(t)^2$$

where $\Delta_{\mathcal{K}}(t)$ is the Alexander polynomial.

Genus bound (conjecturally):

$$\deg_t V_{\mathcal{K},n}(t,q) \leq 4g(\mathcal{K})$$

where g(K) is Seifert genus of K.

Shana Li

イロト イロト イヨト イヨト

UIUC

Theorems

- (GKKST) The V₁-polynomial is the Links–Gould polynomial.
- (KT) The Links–Gould polynomial satisfies both the specialization and the genus bound.
- $V_{K,2}$ is determined by

$$V_{K,2}(t^2,q^2) = c_{2,0}(t,q)V_{K(2,1),1}(t,q) + c_{2,-1}(t,q)V_{K,1}(t^2q^{-1},q) + c_{2,1}(t,q)V_{K,1}(t^2q,q)$$

where K(2,1) is the (2,1)-parallel of K.

イロン イロン イヨン イヨン

UIUC

Theorems

- (GKKST) The V₁-polynomial is the Links–Gould polynomial.
- (KT) The Links–Gould polynomial satisfies both the specialization and the genus bound.
- $V_{K,2}$ is determined by

$$V_{K,2}(t^2,q^2) = c_{2,0}(t,q)V_{K(2,1),1}(t,q) + c_{2,-1}(t,q)V_{K,1}(t^2q^{-1},q) + c_{2,1}(t,q)V_{K,1}(t^2q,q)$$

where K(2,1) is the (2,1)-parallel of K.

Since g(K(2,1)) = 2g(K), the last statement implies that V_2 also satisfies both the specialization and the genus bound.

Theorems

- (GKKST) The V₁-polynomial is the Links–Gould polynomial.
- (KT) The Links–Gould polynomial satisfies both the specialization and the genus bound.
- $V_{K,2}$ is determined by

$$V_{K,2}(t^2,q^2) = c_{2,0}(t,q)V_{K(2,1),1}(t,q) + c_{2,-1}(t,q)V_{K,1}(t^2q^{-1},q) + c_{2,1}(t,q)V_{K,1}(t^2q,q)$$

where K(2,1) is the (2,1)-parallel of K.

Since g(K(2,1)) = 2g(K), the last statement implies that V_2 also satisfies both the specialization and the genus bound. Conjecturally, V_n -polynomials satisfy relations similar to the one above.

イロン イロン イヨン イヨン

Patterns of the V_n -polynomials

イロト イロト イヨト イヨト

æ

UIUC

Question

When is the equality achieved in the genus bound inequality?

 $\deg_t V_{K,n}(t,q) \leq 4g(K)$

Shana Li

Patterns of the V_n -polynomials

イロト イヨト イヨト イヨト

UIUC

Question

When is the equality achieved in the genus bound inequality?

$$\deg_t V_{K,n}(t,q) \leq 4g(K)$$

With the specialization, we have

$$2\deg_t \Delta_{\mathcal{K}}(t) \leq \deg_t V_{\mathcal{K},n}(t,q) \leq 4g(\mathcal{K}).$$

Patterns of the V_n -polynomials

Question

When is the equality achieved in the genus bound inequality?

$$\deg_t V_{K,n}(t,q) \leq 4g(K)$$

With the specialization, we have

$$2 \deg_t \Delta_{\mathcal{K}}(t) \leq \deg_t V_{\mathcal{K},n}(t,q) \leq 4g(\mathcal{K}).$$

Since Alexander polynomials satisfy $\deg_t \Delta_{\mathcal{K}}(t) \leq 2g(\mathcal{K})$, a sufficient condition:

$$\deg_t \Delta_{\mathcal{K}}(t) = 2g(\mathcal{K}). \tag{1}$$

イロト イヨト イヨト イヨト

UIUC

Shana Li

Patterns of the V_n -polynomials

Question

When is the equality achieved in the genus bound inequality?

$$\deg_t V_{K,n}(t,q) \leq 4g(K)$$

With the specialization, we have

$$2 \deg_t \Delta_{\mathcal{K}}(t) \leq \deg_t V_{\mathcal{K},n}(t,q) \leq 4g(\mathcal{K}).$$

Since Alexander polynomials satisfy $\deg_t \Delta_{\mathcal{K}}(t) \leq 2g(\mathcal{K})$, a sufficient condition:

$$\deg_t \Delta_{\mathcal{K}}(t) = 2g(\mathcal{K}). \tag{1}$$

・ロン ・四 ・ ・ ヨ ・ ・ ヨ ・ ・

UIUC

We call knots satisfying eq. (1) tight, and others loose.

Shana Li

omputation of the V_n-polynomials

Patterns of the V_n -polynomials

There are no loose knots with \leq 10 crossings.

UIUC

Computation of the V_n-polynomials

Patterns of the V_n -polynomials

イロト イロト イヨト イヨト

æ

UIUC

There are no loose knots with \leq 10 crossings.

crossings	11	12	13	14	15	16
Knots	552	2176	9988	46972	253293	1388705
Loose knots	7	29	208	1220	6319	48174

Table: Knot counts, up to mirror image

Shana Li

Patterns of the V_n -polynomials

イロト イヨト イヨト イヨト

æ

UIUC

There are no loose knots with \leq 10 crossings.

crossings	11	12	13	14	15	16
Knots	552	2176	9988	46972	253293	1388705
Loose knots	7	29	208	1220	6319	48174

Table: Knot counts, up to mirror image

polynomial	V_1	<i>V</i> ₂	<i>V</i> ₃	V_4
Knots	≤ 15	≤ 15	≤ 11	≤ 10
Loose knots	≤ 16	≤ 16		

Table: Computed knots for each V_n

Patterns of the V_n -polynomials

There are no loose knots with \leq 10 crossings.

crossings	11	12	13	14	15	16
Knots	552	2176	9988	46972	253293	1388705
Loose knots	7	29	208	1220	6319	48174

Table: Knot counts, up to mirror image

polynomial	V_1	<i>V</i> ₂	<i>V</i> ₃	V_4
Knots	≤ 15	≤ 15	≤ 11	≤ 10
Loose knots	≤ 16	≤ 16		

Table: Computed knots for each V_n

crossings	11	12	13	14	15	16
V_1 genus bound $<$	7	20	173	974	5025	37205
V_2 genus bound $<$	0	0	0	0	0	0

Table: Non-sharp genus bound counts

æ

イロト イヨト イヨト イヨト

Theorem (Garoufalidis & Li, 2024)

The genus bound inequality is an equality for V_2 -polynomials for all 1,701,936 knots with \leq 16 crossings.

(a)

イロト イポト イヨト イヨト

UIUC

Theorem (Garoufalidis & Li, 2024)

The genus bound inequality is an equality for V_2 -polynomials for all 1,701,936 knots with \leq 16 crossings.

In other words, the V_2 -polynomials (conjecturally) detect the genus – an achievement only the knot Floer homology has made before.

イロン イヨン イヨン イヨン

UIUC

Theorem (Garoufalidis & Li, 2024)

The genus bound inequality is an equality for V_2 -polynomials for all 1,701,936 knots with \leq 16 crossings.

In other words, the V_2 -polynomials (conjecturally) detect the genus – an achievement only the knot Floer homology has made before.

Question

Does the V_2 -polynomials actually detect the genus of knots? Why?

Question

When do two knots have equal V_2 polynomial?

Shana Li

Multivariable knot polynomials, the V_n -polynomials, and their patterns

æ

イロト イロト イヨト イヨト

・ロト ・四ト ・ヨト ・ヨト

æ

UIUC

Question

When do two knots have equal V_2 polynomial?

crossings	≤ 11	12	13	14	15
pairs	0	3	25	187	2324
triples	0	0	0	1	38

Table: Number of V_2 -equivalence classes of size more than 1 (up to mirror image).

Patterns of the V_n -polynomials

Question

When do two knots have equal V_2 polynomial?

crossings	≤ 11	12	13	14	15
pairs	0	3	25	187	2324
triples	0	0	0	1	38

Table: Number of V_2 -equivalence classes of size more than 1 (up to mirror image).

Theorem (Garoufalidis & Li, 2024)

All knots with \leq 15 crossings in the same V₂-equivalence classes

- have equal HFK and equal Khovanov Homology,
- are Conway mutant knots to each other, in particular they have equal volumes, trace field, colored Jones polynomials, ADO polynomials and HOMFLY polynomial.

UIUC

Theorem (Garoufalidis & Li, 2024)

All knots with \leq 15 crossings in the same V₂-equivalence classes

- have equal HFK and equal Khovanov Homology,
- are Conway mutant knots to each other, in particular they have equal volumes, trace field, colored Jones polynomials, ADO polynomials and HOMFLY polynomial.

Shana Li

Theorem (Garoufalidis & Li, 2024)

All knots with \leq 15 crossings in the same V₂-equivalence classes

- have equal HFK and equal Khovanov Homology,
- are Conway mutant knots to each other, in particular they have equal volumes, trace field, colored Jones polynomials, ADO polynomials and HOMFLY polynomial.

crossings	11	12	13	14	15
V ₂ -equiv classes	0	3	25	188	2362
mutant classes	16	75	774	4435	29049

Table: Number of nontrivial V2-equiv classes versus Conway mutant classes.

イロト イポト イヨト イヨト

< ロ > < 同 > < 回 > < 回 > < 回 > <

UIUC

Theorem (Garoufalidis & Li, 2024)

All knots with \leq 15 crossings in the same V₂-equivalence classes

- have equal HFK and equal Khovanov Homology,
- are Conway mutant knots to each other, in particular they have equal volumes, trace field, colored Jones polynomials, ADO polynomials and HOMFLY polynomial.

Question

Are V_2 -equivalent knots always Conway mutant? Do they always have equal HFK and equal Khovanov Homology? Why?

イロト イポト イヨト イヨト

UIUC

Question

Shana Li

Are V_2 -equivalent knots always Conway mutant? Do they always have equal HFK and equal Khovanov Homology? Why?

A partial answer: most of them are HFK-thin and Khovanov-thin, for which equal HFK and equal Khovanov Homology follows given the mutant condition.

イロト イボト イヨト イヨト

UIUC

Question

Are V_2 -equivalent knots always Conway mutant? Do they always have equal HFK and equal Khovanov Homology? Why?

A partial answer: most of them are HFK-thin and Khovanov-thin, for which equal HFK and equal Khovanov Homology follows given the mutant condition.

total	tight & thin	tight & thick	loose & thick
2578	1877	457	244

Table: Number of nontrivial V_2 -equiv classes in each flavor, up to 15 crossings.

Patterns of the V_n -polynomials

æ

UIUC

A Conspiracy Theory:

▲日▼ ▲国▼ ▲国▼ ▲国▼

omputation of the V_n-polynomials

A Conspiracy Theory:

Proposition

For all alternating knots with ≤ 15 crossings, we have

$$V_1(t,-q), V_2(t,-q) \in \mathbb{Z}_{\geq 0}[t^{\pm 1},q^{\pm 1}].$$

æ

イロト イヨト イヨト イヨト

イロト イヨト イヨト イヨト

UIUC

A Conspiracy Theory:

Proposition

For all alternating knots with ≤ 15 crossings, we have

$$V_1(t,-q), V_2(t,-q) \in \mathbb{Z}_{\geq 0}[t^{\pm 1},q^{\pm 1}].$$

Question

Does this indicate a categorification of V_1 and V_2 ?